[1] TORRES HIGUERA L D,JIMÉNEZ VELÁSQUEZ S D C,RODRÍGUEZ BAUTISTA J L,et al.Identification of Brucella abortus biovar 4 of bovine origin in Colombia[J].Revista Argentina de Microbiología,2019,51(3):221-228. [2] SHAHRABI A R,MORADKASANI S,GOODARZI F,et al.Prevalence of Brucella melitensis and Brucella abortus tetracyclines resistance:A systematic review and Meta-analysis[J].Microbial Pathogenesis,2023,183:106321. [3] CORBEL M J.Brucellosis in Humans and Animals[M].Switzerland:WHO Press,World Health Organization,2006. [4] BAGHERI NEJAD R,KRECEK R C,KHALAF O H,et al.Brucellosis in the Middle East:Current situation and a pathway forward[J].PLoS Neglected Tropical Diseases, 2020,14(5):e0008071. [5] AVILA-CALDERÓN E D,LOPEZ-MERINO A,SRIRANGANATHAN N,et al.A history of the development of Brucella vaccines[J].BioMed Research International,2013,2013:743509. [6] LI P,JIANG H,FENG Y,et al.The advances of the Chinese Brucella suis strain 2 vaccine[J].Animal Research and One Health,2023,1(1):115-126. [7] 马晓菁,居麦库尔班,舒展,等.2012—2014年新疆动物布鲁氏菌病流行病学调查与分析[J].畜牧与兽医,2016,48(5):111-114. MA X J,JUMAI K,SHU Z,et al.Epidemiological investigation of animal brucellosis in Xinjiang from 2012 to 2014[J].Animal Husbandry & Veterinary Medicine,2016,48(5):111-114.(in Chinese) [8] 易新萍,叶锋,李金平,等.新疆牛羊布鲁氏菌流行株种及生物型鉴定[J].新疆农业科学,2015,52(2):339-343. YI X P,YE F,LI J P,et al.Species and biotype analysis of isolated strains of Brucella in Xinjiang[J].Xinjiang Agricultural Sciences,2015,52(2):339-343.(in Chinese) [9] YUAN H T,WANG C L,LIU L N,et al.Epidemiologically characteristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in Hinggan League of the Inner Mongolia Autonomous Region,China[J].Infectious Diseases of Poverty,2020,9(1):79. [10] WARETH G,EL-DIASTY M,ABDEL-HAMID N H,et al.Molecular characterization and antimicrobial susceptibility testing of clinical and non-clinical Brucella melitensis and Brucella abortus isolates from Egypt[J].One Health,2021,13:100255. [11] 谢群,胡琳,袁红霞,等.2021年郴州市人间布鲁氏菌病流行特征及分离菌株种型鉴定[J].中国感染控制杂志,2023,22(4):463-467. XIE Q,HU L,YUAN H X,et al.Epidemiological characteristics and species identification of isolated strains of human brucellosis in Chenzhou city in 2021[J].Chinese Journal of Infection Control,2023,22(4):463-467.(in Chinese) [12] 聂守民,罗波艳,孙养信,等.2020年陕西省布鲁氏菌MLVA分型研究及流行病学分析[J].中华地方病学杂志,2022,41(3):180-185. NIE S M,LUO B Y,SUN Y X,et al.Research and epidemiological analysis on MLVA typing of Brucella in Shaanxi province in 2020[J].Chinese Journal of Endemic Diseases,2022,41(3):180-185.(in Chinese) [13] 韩腾伟,林代华,刘菁,等.福建省2008—2017年人间布鲁氏菌病流行特征及分离株MLVA分型研究[J].中国人兽共患病学报,2019,35(5):382-388. HAN T W,LIN D H,LIU J,et al.Epidemic characteristics of human brucellosis and MLVA typing of isolated strains in Fujian,China 2008-2017[J].Chinese Journal of Zoonosis,2019,35(5):382-388.(in Chinese) [14] 王旭明,黄梅会,崔步云.海南省布鲁氏菌病疫情特征研究[J].中华流行病学杂志,2019,40(3):350-353. WANG X M,HUANG M H,CUI B Y.Analysis on brucellosis epidemiological characteristics in Hainan province[J].Chinese Journal of Epidemiology,2019,40(3):350-353.(in Chinese) [15] 李博,岳锡宏,崔步云,等.多位点序列分型在新疆人间布鲁氏菌病临床分离株遗传进化研究中的应用[J].中国人兽共患病学报,2019,35(5):411-415. LI B,YUE X H,CUI B Y,et al.Application of multi-locus sequence typing in the genetic evolution of Brucella clinical strains isolated in Xinjiang[J].Chinese Journal of Zoonoses,2019,35(5):411-415.(in Chinese) [16] LI T,TONG Z,HUANG M,et al.Brucella melitensis M5-90Δbp26 as a potential live vaccine that allows for the distinction between natural infection and immunization[J].Canadian Journal of Microbiology,2017,63(8):719-729. [17] 欧阳伟强,陈盛文,周柱辉,等.动物布鲁氏菌病疫苗的研究进展[J].畜牧兽医科技信息,2018,6:4-5. OUYANG W Q,CHEN S W,ZHOU Z H, et al.Research progress on animal brucellosis vaccines[J].Animal Husbandry and Veterinary Technology Information,2018,6:4-5.(in Chinese) [18] BUNDLE D R,MCGIVEN J.Brucellosis:Improved diagnostics and vaccine insights from synthetic glycans[J].Accounts of Chemical Research,2017,50(12):2958-2967. [19] CORONAS-SERNA J M,LOUCHE A,RODRÍGUEZ-ESCUDERO M,et al.The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism[J].PLoS Pathogens,2020,16(4):e1007979. [20] ZHANG H,WANG Y,WANG Y,et al.Using a relative quantitative proteomic method to identify differentially abundant proteins in Brucella melitensis biovar 3 and Brucella melitensis M5-90[J].Frontiers in Immunology,2022,13:929040. [21] DE JONG M F,SUN Y H,DEN HARTIGH A B,et al.Identification of VceA and VceC,two members of the VjbR regulon that are translocated into macrophages by the Brucella type Ⅳ secretion system[J].Molecular Microbiology,2008,70(6):1378-1396. [22] ZHU L,FENG Y,ZHANG G,et al.Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp.infections[J].Vaccine,2016,34(3):395-400. [23] 董伟,张金学,王建军,等.M5和S2株布鲁氏菌活疫苗对羔羊的免疫效果及对其生长性能的影响[J].中国动物检疫,2023,40(3):125-130. DONG W,ZHANG J X,WANG J J,et al.Studies on the performance of live brucellosis vaccines(M5 and S2 Strain)for the immunization and growth of lambs[J].Chinese Animal Health Inspection,2023,40(3):125-130.(in Chinese) [24] HERZBERG M,ELBERG S S,MEYER K F.Immunization against Brucella infection.Ⅱ.Effectiveness of a streptomycin-dependent strain of Brucella melitensis[J].Journal of Bacteriology,1953,66(5):600-605. [25] SALMON-DIVON M,KORNSPAN D.Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation[J]. International Journal of Medical Microbiology,2020,310(1):151363. [26] HEIDARY M,DASHTBIN S,GHANAVATI R,et al.Evaluation of brucellosis vaccines:A comprehensive review[J].Frontiers in Veterinary Science,2022,9:925773. [27] 王军,王瑞,申之义,等.流产布鲁氏菌bp26和omp10基因的同源性分析[J].中国兽医科学,2011,41(1):25-30. WANG J,WANG R,SHEN Z Y,et al.Identity analysis of bp26and omp10genes of Brucella abortus[J].Chinese Veterinary Science,2011,41(1):25-30.(in Chinese) [28] RAJENDHRAN J.Genomic insights into Brucella[J].Infection,Genetics and Evolution,2021,87:104635. [29] WANG Z,LIU W,WU T,et al.RNA-Seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence[J].Science China.Life Sciences,2016,59(4):417-424. [30] 王玉舜,成杰,王家伟,等.布鲁氏菌弱毒活疫苗对绵羊全群免疫的探讨[J].中国兽医杂志,2021,57(3):98-102. WANG Y S,CHENG J,WANG J W,et al.Study on the whole population immunity of sheep with live attenuated Brucella vaccine[J].Chinese Journal of Veterinary Medicine,2021,57(3):98-102.(in Chinese) [31] BRUFFAERTS N,ROMANO M,DENIS O,et al.Increasing the vaccine potential of live M.bovis BCG by coadministration with plasmid DNA encoding a tuberculosis prototype antigen[J].Vaccines,2014,2(1):181-195. [32] 徐朕宇,徐锦凤,邓肖玉,等.布鲁氏菌外膜囊泡生物信息学分析及免疫原性评价[J].中国畜牧兽医,2023,50(7):2906-2914. XU Z Y,XU J F,DENG X Y,et al.Bioinformatics analysis and immunogenicity evaluation of Brucella outer membrane vesicles[J].China Animal Husbandry & Veterinary Medicine,2023,50(7):2906-2914.(in Chinese) [33] GOLSHANI M,AMANI M,AMIRZADEH F,et al.Evaluation of Poly(I:C) and combination of CpG ODN plus Montanide ISA adjuvants to enhance the efficacy of outer membrane vesicles as an acellular vaccine against Brucella melitensis infection in mice[J].International Immunopharmacology,2020,84:106573. [34] CZIBENER C,REY SERANTES D A,ROMANI A M,et al.Bm Delta-pgm,a vaccine for the control of Brucella melitensis with cross-species protective properties[J].Vaccine,2023,41(23):3534-3543. [35] 张慧桐,赵键龙,隆力扬,等.马耳他布鲁氏菌M5-90L31基因缺失株的安全性和免疫原性评估[J].中国预防兽医学报,2022,44(11):1196-1200. ZHANG H T,ZHAO J L,LONG L Y,et al.Evaluation of the safety and immunogenicity of L31 gene deletion strain of Brucella melitensis M5-90[J].Chinese Journal of Preventive Veterinary Medicine,2022,44(11):1196-1200.(in Chinese) [36] LI Z,WANG S,ZHANG H,et al.Development and evaluation of in murine model,of an improved live-vaccine candidate against brucellosis from to Brucella melitensis vjbR deletion mutant[J].Microbial Pathogenesis,2018,124:250-257. [37] ALCANTARA R B,READ R D A,VALDERAS M W,et al.Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model[J].Infection and Immunity,2004,72(8):4911-4917. [38] ALMIRÓN M,MARTÍNEZ M,SANJUAN N,et al.Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence[J].Infection and Immunity,2001,69(10):6225-6230. [39] DEN HARTIGH A B,SUN Y H,SONDERVAN D,et al.Differential requirements for VirB1 and VirB2during Brucella abortus infection[J].Infection and Immunity,2004,72(9):5143-5149. [40] FERGUSON G P,DATTA A,BAUMGARTNER J,et al.Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(14):5012-5017. [41] LEVIER K,PHILLIPS R W,GRIPPE V K,et al.Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival[J].Science (New York,N.Y.),2000,287(5462):2492-2493. [42] TRANT C G M C,LACERDA T L S,CARVALHO N B,et al.The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice[J].Infection and Immunity,2010,78(5):2283-2291. [43] 孙浩杰,徐磊,孙佳丽,等.羊种布鲁氏菌WadC基因缺失株的构建与鉴定[J].中国畜牧兽医,2020,47(12):3852-3860. SUN H J,XU L,SUN J L,et al.Construction and identification of Brucella WadC gene deletion strain[J].China Animal Husbandry & Veterinary Medicine,2020,47(12):3852-3860.(in Chinese) [44] LALSIAMTHARA J,GOGIA N,GOSWAMI T K,et al.Intermediate rough Brucella abortus S19Δper mutant is DIVA enable,safe to pregnant guinea pigs and confers protection to mice[J].Vaccine,2015,33(22):2577-2583. [45] GUPTA V K,RADHAKRISHNAN G,HARMS J,et al.Invasive Escherichia coli vaccines expressing Brucella melitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B.melitensis[J].Vaccine,2012,30(27):4017-4022. [46] SIEIRA R,COMERCI D J,PIETRASANTA L I,et al.Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon[J].Molecular Microbiology,2004,54(3):808-822. [47] FRONZES R,REMAUT H,WAKSMAN G.Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria[J].The EMBO Journal,2008,27(17):2271-2280. [48] TIAN M,SONG M,YIN Y,et al.Characterization of the main immunogenic proteins in Brucella infection for their application in diagnosis of brucellosis[J].Comparative Immunology, Microbiology and Infectious Diseases,2020,70:101462. [49] GOLSHANI M,RAFATI S,SIADAT S D,et al.Improved immunogenicity and protective efficacy of a divalent DNA vaccine encoding Brucella L7/L12-truncated Omp31 fusion protein by a DNA priming and protein boosting regimen[J].Molecular Immunology,2015,66(2):384-391. [50] ZHU L,WANG Q,WANG Y,et al.Comparison of immune effects between Brucella recombinant Omp10-Omp28-L7/L12 proteins expressed in eukaryotic and prokaryotic systems[J].Frontiers in Veterinary Science,2020,7:576. [51] NASEER A,MO S,OLSEN S C,et al.Brucella melitensis vaccines:A systematic review[J].Agriculture,Multidisciplinary Digital Publishing Institute,2023,13(11):2137. [52] CHEN B,LIU B,ZHAO Z,et al.Evaluation of a DNA vaccine encoding Brucella BvrR in BALB/c mice[J].Molecular Medicine Reports,Spandidos Publications,2019,19(2):1302-1308. [53] BELLO J,SÁEZ D,ESCALONA E,et al.Mucosal immunization of BALB/c mice with DNA vaccines encoding the SEN1002 and SEN1395 open reading frames of Salmonella enterica serovar Enteritidis induces protective immunity[J].Epidemiology and Infection,2016,144(2):247-256. [54] GONZÁLEZ-SMITH A,VEMULAPALLI R,ANDREWS E,et al.Evaluation of Brucella abortus DNA vaccine by expression of Cu-Zn superoxide dismutase antigen fused to IL-2[J].Immunobiology,2006,211(1-2):65-74. [55] VELIKOVSKY C A,CASSATARO J,GIAMBARTOLOMEI G H,et al.A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice[J].Infection and Immunity,2002,70(5):2507-2511. [56] HARZANDI N,AGHABABA H,KHORAMABADI N,et al.Efficient immunization of BALB/c mice against pathogenic Brucella melitensis and B.ovis:Comparing cell-mediated and protective immune responses elicited by pCDNA3.1 and pVAX1 DNA vaccines coding for Omp31 of Brucella melitensis[J].Iranian Journal of Biotechnology,2021,19(1):e2618. [57] SHOJAEI M,TAHMOORESPUR M,SOLTANI M,et al.Immunogenicity evaluation of plasmids encoding Brucella melitensis Omp25 and Omp31 antigens in BALB/c mice[J].Iranian Journal of Basic Medical Sciences,2018,21(9):957-964. [58] MALEKI M,SALOUTI M.Immunization effect of lipopolysaccharide antigen in conjugation with PLGA nanoparticles as a nanovaccine against Brucella melitensis infection[J].Biologicals,2021,72:10-17. [59] AFSHARI H,MALEKI M,SALOUTI M.Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles[J].European Polymer Journal,2020,139:110021. [60] SADAT TABATABAEI MIRAKABAD F,NEJATI-KOSHKI K,AKBARZADEH A,et al.PLGA-based nanoparticles as cancer drug delivery systems[J].Asian Pacific Journal of Cancer Prevention,2014,15(2):517-535. [61] MALEKI M,SALOUTI M,SHAFIEE ARDESTANI M,et al.Preparation of a nanovaccine against Brucella melitensis M16 based on PLGA nanoparticles and oligopolysaccharide antigen[J].Artificial Cells,Nanomedicine,and Biotechnology,2019,47(1):4248-4256. [62] HUANG J,WANG Y,WANG K,et al.Biosynthesis and immunological evaluation of a dual-antigen nanoconjugate vaccine against Brucella melitensis[J].Engineering,2023,29(10):95-109. |