China Animal Husbandry and Veterinary Medicine ›› 2023, Vol. 50 ›› Issue (10): 4133-4140.doi: 10.16431/j.cnki.1671-7236.2023.10.027
• Genetics and Breeding • Previous Articles Next Articles
XIE Fang, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie
Received:
2023-03-26
Online:
2023-10-05
Published:
2023-09-26
CLC Number:
XIE Fang, LUO Junyi, CHEN Ting, XI Qianyun, ZHANG Yongliang, SUN Jiajie. Research Progress on Non-coding RNA Regulating Intermuscular Fat Deposition in Pig[J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(10): 4133-4140.
[1] SCHUMACHER M,DELCURTO-WYFFELS H,THOMSON J,et al.Fat deposition and fat effects on meat quality-A review[J].Animals (Basel),2022,12(12):1550. [2] 杨茜梓,胡睿智,贺建华,等.影响猪肌间脂肪沉积的主要因素及潜在调控机理[J].动物营养学报,2021,33(3):1266-1276. YANG X Z,HU R Z,HE J H,et al.Main factors affecting porcine intermuscular fat deposition and potential regulation mechanism[J].Chinese Journal of Animal Nutrition,2021,33(3):1266-1276.(in Chinese) [3] MILLER R.Drivers of consumer liking for beef,pork,and lamb:A review[J].Foods,2020,9(4):428. [4] LIU S,HUANG J,WANG X,et al.Transcription factors regulate adipocyte differentiation in beef cattle[J].Animal Genetics,2020,51(3):351-357. [5] MUÑOZ M,GARCÍA-CASCO J M,CARABALLO C,et al.Identification of candidate genes and regulatory factors underlying intramuscular fat content through longissimus dorsi transcriptome analyses in heavy Iberian pigs[J].Frontiers in Genetics,2018,9:608. [6] LI Q,HUANG Z,ZHAO W,et al.Transcriptome analysis reveals long intergenic non-coding RNAs contributed to intramuscular fat content differences between Yorkshire and Wei pigs[J].International Journal of Molecular Sciences,2020,21(5):1732. [7] PALAZZO A F,LEE E S.Non-coding RNA:What is functional and what is junk?[J].Frontiers in Genetics,2015,6:2. [8] KATARIA P,SURELA N,CHAUDHARY A,et al.miRNA:Biological regulator in host-arasite interaction during malaria infection[J].International Journal of Environmental Research and Public Health,2022,19(4):2395. [9] O'BRIEN J,HAYDER H,ZAYED Y,et al.Overview of microRNA biogenesis,mechanisms of actions,and circulation[J].Frontiers in Endocrinology,2018,9:402. [10] XIAO M,LI J,LI W,et al.microRNAs activate gene transcription epigenetically as an enhancer trigger[J].RNA Biology,2017,14(10):1326-1334. [11] CORREIA DE SOUSA M,GJORGJIEVA M,DOLICKA D,et al.Deciphering miRNAs' action through miRNA editing[J].International Journal of Molecular Sciences,2019,20(24):6249. [12] GJORGJIEVA M,SOBOLEWSKI C,DOLICKA D,et al.miRNAs and NAFLD:From pathophysiology to therapy[J].Gut,2019,68(11):2065-2079. [13] MA T,JIA H,JI P,et al.Identification of the candidate lncRNA biomarkers for acute kidney injury:A systematic review and meta-analysis[J].Expert Review of Molecular Diagnostics,2021,21(1):77-89. [14] DENIZ E,ERMAN B.Long noncoding RNA (lincRNA),a new paradigm in gene expression control[J].Functional & Integrative Genomics,2017,17(2-3):135-143. [15] ZUCKERMAN B,RON M,MIKL M,et al.Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex[J].Molecular Cell,2020,79(2):251-267. [16] DUTTA A,LI H,ABOUNADER R.Cryptic lncRNA-encoded ORFs:A hidden source of regulatory proteins[J].The Journal of Clinical Investigation,2023,133(5):e167271. [17] STATELLO L,GUO C J,CHEN L L,et al.Gene regulation by long non-coding RNAs and its biological functions[J].Nature Reviews Molecular Cell Biology,2021,22(2):96-118. [18] WANG L X,WAN C,DONG Z B,et al.Integrative analysis of long noncoding RNA (lncRNA),microRNA (miRNA) and mRNA expression and construction of a competing endogenous RNA (ceRNA) network in metastatic melanoma[J].Medical Science Monitor,2019,25:2896-2907. [19] GAO Y,WANG S,MA Y,et al.Circular RNA regulation of fat deposition and muscle development in cattle[J].Veterinary Medicine and Science,2022,8(5):1-10. [20] HUANG A,ZHENG H,WU Z,et al.Circular RNA-protein interactions:Functions,mechanisms,and identification[J].Theranostics,2020,10(8):3503-3517. [21] THOMAS L F,SAETROM P.Circular RNA are depleted of polymorphisms at microRNA binding sites[J].Bioinformatics,2014,30(16):2243-2246. [22] PAULA M,ALLISON J,HANG H,et al.Transcriptional regulation of adipogenesis[J].Comprehensive Physiology,2017,7(2):635-674. [23] UEZUMI A,FUKADA S,YAMAMOTO N,et al.Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J].Nature Cell Biology,2010,12:143-152. [24] UEZUMI A,FUKADA S,YAMAMOTO N,et al.Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle[J].Cell Death and Disease,2014,5:e1186. [25] LI X,FU X,YANG G,et al.Review:Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals[J].Animal,2020,14(2):312-321. [26] GONZALEZ D,CONTRERAS O,REBOLLEDO D L,et al.ALS skeletal muscle shows enhanced TGF-β signaling,fibrosis and induction of fibro/adipogenic progenitor markers[J].PLoS One,2017,12(5):e0177649. [27] JURGEN S,VALLECILLO G P,VOM H,et al.Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury[J].Stem Cell Research,2018,32:8-16. [28] JOE A W,YI L,NATARAJAN A,et al.Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J].Nature Cell Biology,2010,12:153-163. [29] KOPINKE D,ROBERSON E C,REITER J F,et al.Ciliary Hedgehog signaling restricts injury-induced adipogenesis[J].Cell,2017,170(2):340-351. [30] SUN Y M,QIN J,LIU S G,et al.PDGFRα regulated by miR-34a and FoxO1 promotes adipogenesis in porcine intramuscular preadipocytes through ERK signaling pathway[J].International Journal of Molecular Sciences,2017,18(11):2424. [31] LI X,FU X,YANG G,et al.Review:Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals[J].Animal,2020,14(2):312-321. [32] 刘慧莹.猪肌内脂肪沉积相关miRNA的鉴定及其功能研究[D].武汉:华中农业大学,2014. LIU H Y.Identification and function study of miRNA associated with porcine intramuscular fat deposition[D].Wuhan:Huazhong Agricultural University,2014.(in Chinese) [33] MIAO Z,SHAN W,WANG Y,et al.Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs[J].Journal of Cellular Biochemistry,2019,120(1):192-200. [34] SUN Y,WANG S,LIU H,et al.Profiling and characterization of miRNAs associated with intramuscular fat content in Yorkshire pigs[J].Animal Biotechnology,2020,31(3):1-8. [35] PROSDOCIMO D A,SABEH M K,JAIN M K.Kruppel-like factors in muscle health and disease[J].Trends in Cardiovascular Medicine,2015,25(4):278-287. [36] DU J,XU Y,ZHANG P,et al.microRNA-125a-5p affects adipocytes proliferation,differentiation and fatty acid composition of porcine intramuscular fat[J].International Journal of Molecular Sciences,2018,19(2):1-3. [37] XU K,JI M,HUANG X,et al.Differential regulatory roles of microRNAs in porcine intramuscular and subcutaneous adipocytes[J].Journal of Agricultural and Food Chemistry,2020,68(13):3954-3962. [38] LIU H C,WEI W,LIN W M,et al.miR-32-5p regulates lipid accumulation in intramuscular fat of Erhualian pigs by suppressing KLF3[J].Lipids,2021,56(3):279-287. [39] ZHANG X,YOUNG H A.PPAR and immune system-What do we know?[J].International Immunopharmacology,2002,2(8):1029-1044. [40] WEI W,SUN W,HAN H,et al.miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression[J].Gene,2017,636:23-29. [41] WANG W,LI X,DING N,et al.miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4[J].BMC Genetics,2020,21(1):1-11. [42] MASHEK D G,BORNFELDT K E,COLEMAN R A,et al.Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family[J].Journal of Lipid Research,2004,45(10):1958-1961. [43] DING N,WANG W,TENG J,et al.miR-26a-5p regulates adipocyte differentiation via directly targeting ACSL3 in adipocytes[J].Adipocyte,2023,12(1):1-10. [44] SHI X,LIU S,METGES C C,et al.C/EBP-beta drives expression of the nutritionally regulated promoter IA of the acetyl-CoA carboxylase-alpha gene in cattle[J].Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2010,1799(8):561-567. [45] GAN M,SHEN L,FAN Y,et al.ssc-miR-451 regulates porcine primary adipocyte differentiation by targeting ACACA[J].Animals,2020,10(10):1891. [46] ZHANG Q,CAI R,TANG G,et al.miR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes[J].Journal of Animal Science and Biotechnology,2021,12(1):1-16. [47] HUANG W,ZHANG X,LI A,et al.Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds[J].Cellular Physiology & Biochemistry,2018,50(6):2406-2422. [48] WANG L,XIE Y,CHEN W,et al.Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs[J].Animal Bioscience,2022,35(1):115-125. [49] TAN L,CHEN Z,TENG M,et al.Genome-wide analysis of mRNAs,lncRNAs,and circRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang pigs[J].PLoS One,2022,17(1):e0261293. [50] YANG X M,LIANG Y,ZHONG Z J,et al.Comparison of long non-coding RNAs in adipose and muscle tissues between seven indigenous Chinese and the Yorkshire pig breeds[J].Animal Genetics,2021,52(5):645-655. [51] SUN Y,CAI R,WANG Y,et al.A newly identified lncRNA lncIMF 4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis[J].Animals (Basel),2020,10(6):926. [52] 孟珊,杨阳,李睿霄,等.lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J].畜牧兽医学报,2022,53(6):1712-1722. MENG S,YANG Y,LI R X,et al.Screening and functional study of lncRNA-6617 regulating porcine intramuscular preadipocytes differentiation[J].Chinese Journal of Animal and Veterinary Sciences,2022,53(6):1712-1722.(in Chinese) [53] YI X,HE Z,TIAN T,et al.lncIMF 2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging miR-217[J].Animal Biotechnology,2023,34(2):268-279. [54] WANG J,CHEN M Y,CHEN J F,et al.lncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1[J].BMC Molecular and Cell Biology,2020,21(1):1-16. [55] LI J,ZHAO X,WANG Y,et al.Comprehensive analysis of differentially expressed mRNAs,lncRNAs and circRNAs related to intramuscular fat deposition in Laiwu pigs[J].Genes,2022,13(8):1349. [56] QI K,LIU Y,LI C,et al.Construction of circRNA-related ceRNA networks in longissimus dorsi muscle of Queshan Black and Large White pigs[J].Molecular Genetics & Genomics,2022,297(1):101-112. [57] 李嫒,张秀秀,黄万龙,等.大白猪和莱芜猪肌内脂肪组织circRNAs的鉴定与分析[J].畜牧兽医学报,2018,49(7):1343-1353. LI A,ZHANG X X,HUANG W L,et al.Identification and analysis of circRNAs in intramuscular adipose tissues between Large White and Laiwu pigs[J].Chinese Journal of Animal and Veterinary Sciences,2018,49(7):1343-1353.(in Chinese) [58] YOUSUF S,LI A,FENG H,et al.Genome-wide expression profiling and networking reveals an imperative role of IMF-associated novel circRNAs as ceRNA in pigs[J].Cells,2022,11(17):2638. [59] LI B,HE Y,WU W,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].Journal of Agricultural and Food Chemistry,2022,70(13):4123-4137. [60] LIU Y,DOU Y,QI K,et al.circSETBP1 acts as a miR-149-5p sponge to promote intramuscular fat deposition by regulating CRTCs[J].Journal of Agricultural and Food Chemistry,2022,70(40):12841-12851. |
[1] | YE Jinling, JIANG Shouqun, MAO Shenli, ZHANG Sheng, WANG Yibing, FAN Qiuli, LIN Xiajing, GOU Zhongyong. Effects of Complex Enzymes and Bacillus subtilis on Growth Performance,Meat Quality and Liver Function of Yellow-feathered Broilers [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3550-3561. |
[2] | GONG Shuqi, GENG Aopan, LIU Yumeng, MA Wei, MANG Lai, ZHANG Xinzhuang. Research Progress on the Meat Quality,Nutrient Composition and Influencing Factors of Horsemeat [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3603-3612. |
[3] | SHEN Haiyan, WANG Songqi, ZHANG Bin, LIU Zhicheng, ZHANG Jianfeng, LIAO Ming, ZHANG Chunhong. Bioinformatics Analysis of Porcine A3Z2 Gene and Its Antiviral Activity of PEDV Replication [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3695-3706. |
[4] | WANG Shouyuan, YUN Hongmei, SHI Mingyue, QIN Yunmeng, LI Xiong, CHEN Junzhou, ZHOU Chenbo, CAO Guoqing. Effect of Porcine RPL36A Gene on PK15 Cell Proliferation [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3035-3044. |
[5] | ZHUANG Lei, ZHAO Zitao, WU Yongbao, CAO Junting, GUO Yanhong, WU Zhanyue, WU Sen, WEN Zhiguo. Effects of Overfeeding on Growth and Development,Biochemical Indexes, and Meat Quality of Breast Muscle in Pekin Ducks [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3093-3101. |
[6] | ZHANG Ting, WEI Limin, LIU Guangliang, WANG Feng, CHAO Zhe, REN Yuwei, LIU Hailong, ZHENG Xinli, HUANG Lili, SUN Ruiping. Comparative Analysis of Intestinal Microbial Diversity and Immunity in the Small Intestine of Weaned Piglets from Wuzhishan Pigs and Landrace Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3113-3122. |
[7] | WEN Wei, HU Youjun, CHENG Huangzuo, HE Jun. Research Progress of Regulating Effect of Organic Acids on Intestinal Flora of Pigs and Its Bacteriostatic Mechanism [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3133-3141. |
[8] | LIANG Xiaofen, RAN Xueqin, NIU Xi, LI Sheng, HUANG Shihui, WANG Jiafu. Association Analysis Between Structural Variation of CYP3A29 Gene 3'-UTR and Androgen Level of Muscle Tissue in Xiang Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3199-3209. |
[9] | MA Jing, YANG Danjiao, WEI Longpin, GAN Daibing, LONG Zhixin, HE Yuqi, QING Ting, FAN Yandi, ZHOU Long. Isolation,Identification and Biological Characteristics Analysis of a Moraxella pluranimalium Strain from Tibetan Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3275-3285. |
[10] | WANG Linqing, ZHAO Li, CHEN Ximeng, WU Shaofeng, HAN Yingying, LIU Fang, JIN Yue, CHEN Hongying. Serological Investigation of Porcine Pseudorabies Virus Infection and Genetic Variation Analysis of gE Gene in Henan Province [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3364-3372. |
[11] | NI Ligang, ZHOU Chunbao, XU Pan, ZHANG Yaqin, TAO Yong, ZHANG Junsheng. Analysis of Differentially Expressed Genes and Regulation Pathway of Backfat Tissue in Sujiang Pigs at Different Growth Stages [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(7): 2595-2605. |
[12] | LIU Chunyan, TANG Qingsong, YANG Bijing, WU Qiwen, XIONG Yunxia, HUANG Yanna, YANG Xuefen, WANG Li, JIANG Zongyong, YI Hongbo. Effects of Enterotoxigenic Escherichia coli on Intestinal Morphology, Tight Junction Protein and Extracellular Matrix of Weaned Piglets [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(7): 2697-2706. |
[13] | TAO Maohai, MENG Ke, RONG Xuan, QIANG Hao, NIE Wei, GUO Chenhao, FENG Dengzhen. Polymorphism of MSTN Gene and Its Association Analysis with Meat Quality Traits in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(7): 2766-2776. |
[14] | WEI Mingbang, BIANBA Qiongda, XIAO Qingqing, DUAN Mengqi, CHAMBA Yangzom, SHANG Peng. Cloning,Bioinformatics and Expression Analysis of CDKN1B Gene in Tibetan Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2196-2206. |
[15] | ZHANG Fangwei, ZHANG Qi, LEI Liangliang, SUN Wusheng, ZHANG Di, ZHANG Yunpeng, ZHANG Jingbo, WANG Xiuquan, ZHANG Jing, ZHANG Shumin. Polymorphism of HBEGF Gene and Its Association with Reproductive Traits in Songliao Black Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2370-2379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||