China Animal Husbandry and Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (2): 659-667.doi: 10.16431/j.cnki.1671-7236.2024.02.022
• Genetics and Breeding • Previous Articles Next Articles
YAN Yanxia1,2, LI Zicong1,2, DONG Yazheng1,2, LI Zheng1,2, HUANG Sixiu1,2
Received:
2023-09-25
Online:
2024-02-05
Published:
2024-01-29
Contact:
广东省乡村振兴战略专项"广东省畜禽地方品种保护与开发利用提升工程"
E-mail:sxhuang815@scau.edu.cn
Supported by:
CLC Number:
YAN Yanxia, LI Zicong, DONG Yazheng, LI Zheng, HUANG Sixiu. Gene Modification Technology and Its Application in Animal Breeding and Biomedicine[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 659-667.
[1] JAENISCH R,MINTZ B.Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J].Proceedings of the National Academy of Sciences of the United States of America,1974,71(4):1250-1254. [2] PALMITER R D,BRINSTER R L,HAMMER R E,et al.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J].Nature,1982,300(5893):611-615. [3] GORDON J W,SCANGOS G A,PLOTKIN D J,et al.Genetic transformation of mouse embryos by microinjection of purified DNA[J].Proceedings of the National Academy of Sciences of the United States of America,1980,77(12):7380-7384. [4] PERRY A C,WAKAYAMA T,KISHIKAWA H,et al.Mammalian transgenesis by intracytoplasmic sperm injection[J].Science,1999,284(5417):1180-1183. [5] LOIS C,HONG E J,PEASE S,et al.Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors[J].Science,2002,295(5556):868-872. [6] HOFMANN A,KESSLER B,EWERLING S,et al.Efficient transgenesis in farm animals by lentiviral vectors[J].EMBO Reports,2003,4(11):1054-1058. [7] SASAKI E,SUEMIZU H,SHIMADA A,et al.Generation of transgenic non-human primates with germline transmission[J].Nature,2009,459(7246):523-527. [8] 靳泽华,谢梦利,易辰阳,等.应用基于重组慢病毒的CRISPR/Cas9技术构建基因突变的鸡DF1细胞[J].华中农业大学学报,2019,38(3):83-88. JIN Z H,XIE M L,YI C Y,et al.Using CRISPR/Cas9 technology to construct chicken DF1 cells with gene mutations[J].Journal of Huazhong Agricultural University,2019,38(3):83-88.(in Chinese) [9] 秦川.揭示基因组功能的强大工具:基因打靶技术--2007年度诺贝尔生理学或医学奖成果简介[J].科技导报,2007,24:30-35. QIN C.Powerful tools to reveal the function of the genome:Gene targeting technology--2007 Nobel prize in physiology or medicine introduction[J].Science and Technology Herald,2007,24:30-35.(in Chinese) [10] THOMAS K R,CAPECCHI M R.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Cell,1987,51(3):503-512. [11] SCHNIEKE A E,MCSHIR J,KIND A J,et al.Viable offspring derived from fetal and adult mammalian cells[J].American Journal of Ophthalmology,1997,124(2):276. [12] DING S,WU X,LI G,et al.Efficient transposition of the PiggyBac (PB) transposon in mammalian cells and mice[J].Cell,2005,122(3):473-483. [13] 谢维欣,武建明,王洪梅,等.转座子在动物转基因研究中的应用[J].家畜生态学报,2011,32(5):87-90. XIE W X,WU J M,WANG H M,et al.Application of transposons in transgenic studies in animals[J].Journal of Domestic Animal Ecology,2011,32(5):87-90.(in Chinese) [14] 高宇,程潜,张梦君,等.基因敲除技术研究进展[J].农业技术与装备,2017,8:19-22. GAO Y,CHENG Q,ZHANG M J,et al.Progress in gene knockout technology[J].Agricultural Technology and Equipment,2017,8:19-22.(in Chinese) [15] 滕艳,杨晓.基因打靶技术:开启遗传学新纪元[J].遗传,2007,11:1291-1298. TENG Y,YANG X.Gene-targeting technology:The opening of a new era in genetics[J].Genetic,2007,11:1291-1298.(in Chinese) [16] 肖安,张博.人工核酸内切酶介导的新一代基因组编辑技术进展[J].生物工程学报,2015,31(6):917-928. XIAO A,ZHANG B.Progress in next-generation genome editing technology mediated by artificial endonucleases[J].Journal of Bioengineering,2015,31(6):917-928.(in Chinese) [17] 陶果,信吉阁,肖晶,等.基因敲除技术最新研究进展及其应用[J].安徽农业科学,2013,41(29):11605-11608. TAO G,XIN J G,XIAO J,et al.Recent research progress and application of gene knockout technology[J].Anhui Agricultural Science,2013,41(29):11605-11608.(in Chinese) [18] 张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174. ZHANG B X,SUN Q X,LI H F.Progress in gene modification technology[J].Journal of Bioengineering,2015,31(8):1162-1174.(in Chinese) [19] BIFFI A.Clinical translation of TALENs:Treating SCID-X1 by gene editing in iPSCs[J].Cell Stem Cell,2015,16(4):348-349. [20] SHIAU C E,KAUFMAN Z,MEIRELES A M,et al.Differential requirement for IRF8 in formation of embryonic and adult macrophages in zebrafish[J].Public Library of Science,2015,10(1):e0117513. [21] GEURTS A M,COST G J,FREYVERT Y,et al.Knockout rats via embryo microinjection of zinc-finger nucleases[J].Science,2009,325(5939):433. [22] 梁浩.锌指核酸酶介导的小鼠MSTN基因敲除的研究[D].呼和浩特:内蒙古大学,2015. LIANG H.Study of zinc-finger nuclease-mediated gene knockout of MSTN in mice[D].Hohhot:Inner Mongolia University,2015.(in Chinese) [23] CHRISTIAN M,CERMAK T,DOYLE E L,et al.Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics (Austin),2010,186(2):757-761. [24] MILLER J C,TAN S,QIAO G,et al.A TALE nuclease architecture for efficient genome editing[J].Nature Biotechnology,2011,29(2):143-148. [25] CHEN Y,LU W,GAO N,et al.Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene[J].Science China.Life Sciences,2017,60(2):152-157. [26] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. [27] KHALILI K,KAMINSKI R,CHEN Y,et al.Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing[J].Scientific Reports,2016,4:6:22555. [28] 呼锐.利用CRISPR/Cas9技术一步生产FGF5基因敲除绵羊的研究[D].北京:中国农业大学,2017. HU R.One-step production of FGF5 gene knockout sheep using CRISPR/Cas9 technology[D].Beijing:China Agricultural University,2017.(in Chinese) [29] YANG H,ZHANG J,ZHANG X,et al.CD163 knockout pigs are fully resistant to highly pathogenic Porcine reproductive and respiratory syndrome virus[J].Antiviral Research,2018,151:63-70. [30] WIDJAYA M A,JU J C,LEE S D.CRISPR-edited stem cell transplantation for HIV-related gene modification in vivo:A systematic review[J].Stem Cell Reviews Reports,2022,18(5):1743-1755. [31] 周维,付喜爱,张德显,等.基因敲除技术的研究进展[J].中国兽医杂志,2015,51(3):67-69. ZHOU W,FU X A,ZHANG D X,et al.Progress in gene knockout technology[J].Chinese Veterinary Journal,2015,51(3):67-69.(in Chinese) [32] XIAO A,WU Y,YANG Z,et al.EENdb:A database and knowledge base of ZFNs and TALENs for endonuclease engineering[J].Nucleic Acids Research,2013,41(Database issue):D415-22. [33] THOMAS K R,FOLGER K R,CAPECCHI M R.High frequency targeting of genes to specific sites in the mammalian genome[J].Cell,1986,44(3):419-428. [34] DOYON Y,MCCAMMON J M,MILLER J C,et al.Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases[J].Nature Biotechnology,2008,26(6):702-708. [35] GOLOVAN S P,MEIDINGER R G,AJAKAIYE A,et al.Pigs expressing salivary phytase produce low-phosphorus manure[J]. Nature Biotechnology,2001,19(8):741-745. [36] CRISPO M,MULET A P,TESSON L,et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].Public Library of Science,2015,10(8):e0136690. [37] 艾立纷."多莉"实验室育出能抗禽流感的鸡[N].环球时报,2023-10-12(5). AI L F.The"Dolly"laboratory has produced chickens that can fight avian influenza[N].Global Times,2023-10-12(5).(in Chinese) [38] WHITWORTH K M,ROWLAND R R,EWEN C L,et al.Gene-edited pigs are protected from Porcine reproductive and respiratory syndrome virus[J].Nature Biotechnology,2016,34(1):20-22. [39] GAO Y,WU H,WANG Y,et al.Single Cas9 nickase induced generation of NRAMP1 knock in cattle with reduced off-target effects[J]. Genome Biology,2017,18(1):13. [40] RAVENSBERGEN B,PAUWELS E K J,SALAHEDDINE M,et al.Large scale production of recombinant human lactoferrin in the milk of transgenic cows[J].Nature Biotechnology,2002,20(5):484-487. [41] ZHENG Q,LIN J,HUANG J,et al.Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J].Proceedings of the National Academy of Sciences of the United States of America, 2017,114(45):E9474-E9482. [42] PARK T S,PARK J,LEE J H,et al.Disruption of G0/G1 switch gene 2(G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken[J].FASEB Journal,2019,33(1):1188-1198. [43] HU Z,DING W,ZHU D,et al.TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy[J].Journal of Clinical Investigation,2015,125(1):425-436. [44] YIN H,XUE W,ANDERSON D G.CRISPR-Cas9:A tool for cancer research and therapeutics[J]. Nature Reviews,Clinical Oncology,2019,16(5):281-295. [45] SANTINHA A J,KLINGLER E,KUHN M,et al.Transcriptional linkage analysis with in vivo AAV-Perturb-Seq[J].Nature,2023,622(7982):367-375. [46] NO AUTHORS LISTED.Using CRISPR to study gene function aids understanding of 22q11.2 deletion syndrome[J]. Nature,2023.Doi:10.1038/d41586-023-02779-z.Online ahead of print. [47] PEREZ E E,WANG J,MILLER J C,et al.Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases[J].Nature Biotechnology,2008,26(7):808-816. [48] MUSSOLINO C,MORBITZER R,LUTGE F,et al.A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J].Nucleic Acids Research,2011,39(21):9283-9293. [49] NIU Y,SHEN B,CUI Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014,156(4):836-843. [50] CHENG H,ZHANG F,DING Y.CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications[J].Pharmaceutics,2021,13(10):1649. [51] KOO T,YOON A R,CHO H Y,et al.Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression[J].Nucleic Acids Research,2017,45(13):7897-7908. [52] 胡思慧,刘倩宜,谢冬纯,等.CRISPR/Cas基因编辑技术治疗人类遗传性疾病的临床研究进展[J].生命科学,2022,34(10):1250-1263. HU S H,LIU Q Y,XIE D C,et al.Progress in clinical studies of CRISPR/Cas gene editing technology for the treatment of human genetic diseases[J].Life Sciences,2022,34(10):1250-1263.(in Chinese) [53] 朱佩琪,蒋伟东,周诺.CRISPR/Cas9基因编辑系统的发展及其在医学研究领域的应用[J].中国比较医学杂志,2019,29(2):116-123. ZHU P Q,JIANG W D,ZHOU N.Development of the CRISPR/Cas9 gene editing system and its application in the field of medical research[J].Chinese Journal of Comparative Medicine,2019,29(2):116-123.(in Chinese) [54] PENG J,WANG Y,JIANG J Y,et al.Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Scientific Reports,2015,5:16705. [55] ZENG F,LI Z,ZHU Q,et al.Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors[J].Scientific Reports,2017,7:41270. [56] ZENG F,LIAO S,KUANG Z,et,al.Genetically engineered pigs as efficient salivary gland bioreactors for production of therapeutically valuable human nerve growth factor[J].Cells,2022,11(15):2378. [57] SONG J,ZHONG J,GUO X,et al.Generation of RAG1-and 2-deficient rabbits by embryo microinjection of TALENs[J].Cell Research,2013,23(8):1059-1062. [58] UCHIDA M,SHIMATSU Y,ONOE K,et al.Production of transgenic miniature pigs by pronuclear microinjection[J].Transgenic Research,2001,10(6):577-582. [59] YANG D,WANG C E,ZHAO B,et al.Expression of huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs[J].Human Molecular Genetics,2010,19(20):3983-3994. [60] YAN S,TU Z,LIU Z,et al.A huntingtin knock in pig model recapitulates features of selective neurodegeneration in huneington's disease[J].Cell,2018,173(4):989-1002. |
[1] | SHI Haina, WANG Yongjie, LIANG Wanpeng, GENG Zhiguang, LI Shien, XU Zhenfei, LIU Gang, LIU Zhe. Genetic Diversity and Origin Evolution Analysis of Qingyang Donkey Based on mtDNA D-loop Region Sequence [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 601-613. |
[2] | DAI Kaiyu, YANG Zhifeng, GUO Yexing. Analysis of Codon Usage Bias of Toll-like Receptor 5 Gene in 15 Species [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 11-22. |
[3] | XU Di, YAN Gang, ZHANG Shuai, ZHANG Kun, JIANG Shan, XING Tianqi, WANG Yubin, WANG Mengying, LAN Ganqiu, LIANG Jing. Influencing Factors Analysis and Genetic Parameters Estimation of Growth Traits in Yorkshire Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 193-202. |
[4] | CHEN Yu, LIU Junyang, MU Qing, LU Zeyu, LI Yunhua, LIU Jiasen, WU Zixian, WANG Haoyuan, SUN Yiwen, ZHAO Yanhong. Research Progress on the Regulation of Economic Traits Related to Bovine Ruminants by Long-chain Non-coding RNA [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 203-211. |
[5] | LI Wen, HE Xiaoming, LU Ying, ZHAO Dongxiang, ZHANG Jinbiao, WANG Kai, GAO Zhendong, YUE Dan, LIU Xingneng, DENG Weidong. Research Progress on the Effect of Robo2 Gene on Melanin Formation [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 220-228. |
[6] | ZHANG Yanwei, YU Lijuan, XU Xinming, ABULAIZI Aminiguli, XIE Mengwan, TANG Liping, ZHENG Peiyu, DI Jiang. Advance on Selection Signal Analysis and Its Exploration for Functional Genes in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(12): 4935-4946. |
[7] | LIU Yizheng, CAO Junyi, GAI Kai, CONG Bailin, GUO Shihao, XING Kai, QI Xiaolong, WANG Xiangguo, XIAO Longfei, LONG Cheng, GUO Yong, SHENG Xihui. Research Progress on the Genes Regulating Sperm Motility in Domestic Animals [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(12): 4958-4972. |
[8] | YE Wen, SUN Dongxiao, HAN Bo. Application Progress on Whole Genome Resequencing in Farm Animals [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(10): 4125-4132. |
[9] | BAI Jingjing, LIU Xiaoyu, LIU Lina, SONG Yanfeng, ZHANG Xin, SONG Xiaoyue, SHI Lei, LI Longping, ZHANG Lei, ZHU Haijing, QU Lei. Polymorphism of Notch2 Gene and Its Association Analysis with Cashmere and Growth Traits in Shaanbei White Cashmere Goats [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3630-3640. |
[10] | LIU Yu, ZHANG Linlin, FANG Yi, ZHANG Jinlong, LI Yihai, ZHONG Rongzhen, SHENG Jiahai, HE Yongxiang, GUO Xiaofei, ZHANG Xiaosheng. Polymorphism of STAT5a Gene Intron 10 and Its Association with Lactation Traits in Hu Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3680-3687. |
[11] | LI Xiaojie, HAN Jiangang, LIANG Benmeng, YE Shaohui, JIANG Lin, MA Yuehui. Research Advance on Available Genetic Markers for Important Economic Traits in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3142-3156. |
[12] | BI Yazhen, SHANG Mingyu, XIONG Jinke, HU Wenping, HE Jianning, ZHANG Li. Polymorphism of SRP68 Gene and Its Association with Growth Traits in Hu Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3189-3198. |
[13] | ZHANG Fangwei, ZHANG Qi, LEI Liangliang, SUN Wusheng, ZHANG Di, ZHANG Yunpeng, ZHANG Jingbo, WANG Xiuquan, ZHANG Jing, ZHANG Shumin. Polymorphism of HBEGF Gene and Its Association with Reproductive Traits in Songliao Black Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2370-2379. |
[14] | WANG Zeping, WANG Feifei, ZHANG Ruiming, FU Yanfeng, ZHAO Weimin, DAI Chaohui, CHENG Jinhua, LIAO Chao, LI Hui. Analysis on Polymorphism of SLA-1 Gene and Its Disease Resistance Potential in Suzi Pig [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1918-1927. |
[15] | ZHANG Fangwei, ZHANG Qi, ZHANG Yunpeng, LI Xin, ZHANG Jingbo, ZHANG Shumin, YU Yongsheng. Polymorphism of FOXA2 Gene Exon 3 and Its Association with Reproductive Traits in Songliao Black Pigs [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(4): 1444-1451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||