中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (5): 2101-2114.doi: 10.16431/j.cnki.1671-7236.2025.05.015
• 营养与饲料 • 上一篇
蔡育诚1, 吴灌原2, 杨海冬2, 方一诺2, 陈志胜2, 詹小舒1
收稿日期:
2024-07-22
发布日期:
2025-04-27
通讯作者:
詹小舒
E-mail:m18306618269@163.com
作者简介:
蔡育诚,E-mail:13929353935@163.com。
基金资助:
CAI Yucheng1, WU Guanyuan2, YANG Haidong2, FANG Yinuo2, CHEN Zhisheng2, ZHAN Xiaoshu1
Received:
2024-07-22
Published:
2025-04-27
摘要: 随着畜禽养殖规模的扩大和集约化养殖方式的普及,细菌性疾病频发和抗生素滥用导致的微生物耐药性问题日益凸显,减少抗生素的使用已成为养殖业亟待解决的重要课题,探索绿色高效的“减抗替抗”养殖模式显得尤为迫切。益生菌作为一类能在宿主体内定植并产生有益影响的活体微生物,其在动物健康管理中的作用受到了广泛关注。益生菌通过多种机制发挥其益生作用,包括促进营养物质的吸收、生成短链脂肪酸、竞争性抑制病原菌以及调节免疫功能,从而有效减少养殖业对抗生素的依赖,有助于提升动物的健康水平,为解决微生物耐药性问题提供了理想的替代方案。然而,益生菌在畜禽养殖中的应用仍面临诸多挑战,包括益生菌的安全性、稳定性、市场监管的缺乏,以及菌株更新筛选的效率低下等问题。作者对目前常见的益生菌种类进行了系统性回顾,并深入探讨了其作用机理。未来研究应聚焦于解决上述问题,以推动益生菌在畜禽养殖中的广泛应用。因此,益生菌在畜禽养殖中具有巨大的潜力和应用前景,有望为解决抗生素滥用和微生物耐药性问题提供新的解决方案。
中图分类号:
蔡育诚, 吴灌原, 杨海冬, 方一诺, 陈志胜, 詹小舒. 益生菌在动物健康管理中的作用机制及其应用现状[J]. 中国畜牧兽医, 2025, 52(5): 2101-2114.
CAI Yucheng, WU Guanyuan, YANG Haidong, FANG Yinuo, CHEN Zhisheng, ZHAN Xiaoshu. Mechanisms and Current Applications of Probiotics in Animal Health Management[J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(5): 2101-2114.
[1] 吴蜀豫,冉陆.FAO/WHO《食品益生菌评价指南》[J].中国食品卫生杂志,2003,4:377-379.WU S Y,RAN L.FAO/WHO 《Guideline for the evaluation of probiotic in food》[J].Chinese Journal of Food Hygiene,2003,4:377-379.(in Chinese) [2] ZHANG J,REN X,WANG S,et al.Microbial interventions in yak colibacillosis:Lactobacillus-mediated regulation of intestinal barrier[J].Frontiers in Cellular and Infection Microbiology,2024,14:1337439. [3] TOURÉ R,KHEADR E,LACROIX C,et al.Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes[J].Journal of Applied Microbiology,2003,95(5):1058-1069. [4] PENALOZA-VAZQUEZ A,MA L M,RAYAS-DUARTE P.Isolation and characterization of Bacillus spp.strains as potential probiotics for poultry[J].Canadian Journal of Microbiology,2019,65(10):762-774. [5] SUN S,XU X,LIANG L,et al.Lactic acid-producing probiotic Saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota[J].Frontiers in Immunology,2021,12:777665. [6] KIM H,KIM J,LEE M,et al.Increased amino acid absorption mediated by Lacticaseibacillus rhamnosus IDCC 3201 in high-protein diet-fed mice[J].Journal of Microbiology and Biotechnology,2023,33(4):511-518. [7] 马雪云,王红妹,杨玉华.乳酸杆菌活菌制剂对大肠杆菌和鸡白痢沙门氏菌体外拮抗试验[J].山东畜牧兽医,2006,3:4-5.MA X Y,WANG H M,YANG Y H.In vitro antagonism test of live Lactobacillus preparations against Escherichia coli and Salmonella Pollorum[J].Shangdong Animal Husbandry and Veterinary Medicine,2006,3:4-5.(in Chinese) [8] KELLY S M,MUNOZ-MUNOZ J,VAN SINDEREN D.Plant glycan metabolism by bifidobacteria[J].Frontiers in Microbiology,2021,12:609418. [9] 何金童,程雨辰,任文义,等.地衣芽孢杆菌调控反刍动物胃肠道微生态的研究进展[J].动物营养学报,2023,35(10):6188-6197.HE J T,CHENG Y C,REN W Y,et al.Research progress on the regulation of gastrointestinal microecology in ruminants by Bacillus licheniformis[J].Chinese Journal of Animal Nrutition,2023,35(10):6188-6197.(in Chinese) [10] 吴孔阳,娄亚芳,杨同香,等.枯草芽孢杆菌功能及相关机制研究进展[J].黑龙江畜牧兽医,2020,23:55-58.WU K Y,LOU Y F,YANG T X,et al.Reasearch progress on the function and related mechanisms of Bacillus subtilis[J].Heilongjiang Animal Science and Veterinary Medicine,2020,23:55-58.(in Chinese) [11] 张棋炜.复合酵母发酵饲料对瘤胃细菌数量变化及瘤胃发酵参数的影响[D].呼和浩特:内蒙古农业大学,2017.ZHANG Q W.Effect of compound yeast fermented feed on the number of rumen bacteria and rumen fermentation parameters[D].Hohhot:Inner Mongolia Agricultural University,2017.(in Chinese) [12] 雷喜玲,叶金云,陈丽仙,等.屎肠球菌的作用机制及其在水产动物中的应用[J].饲料工业,2022,43(22):9-15.LEI X L,YE J Y,CHEN L X,et al.Mechanism of action Enterococcus faecium and its application in aquctic animals[J].Feed Industry,2022,43(22):9-15.(in Chinese) [13] GROZDANOV L,RAASCH C,SCHULZE J,et al.Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917[J].Journal of Bacteriology,2004,186(16):5432-5441. [14] 杨泽敏,王微,金正雨,等.饲料中添加益生菌对鲤鱼生长性能、消化酶、抗氧化能力和非特异性免疫的影响[J].中国饲料,2023,15:112-117.YANG Z M,WANG W,JIN Z Y,et.al.Effects of probiotic supplementation on growth performance,digestive enzymes,antioxidant capacity and non-specific immunity of carp in feed[J].Chinese Feed,2023,15:112-117.(in Chinese) [15] FAKHARIAN F,ASGARI B,NABAVI-RAD A,et al.The interplay between Helicobacter pylori and the gut microbiota:An emerging driver influencing the immune system homeostasis and gastric carcinogenesis [J].Frontiers in Cellular and Infection Microbiology,2022,12:953718. [16] 谢燕妮,王海波,雷国华,等.酵母硒和益生菌对罗曼蛋鸡生产性能和血清生化指标的影响[J].饲料研究,2022,45(3):53-57.XIE Y N,WANG H B,LEI G H,et al.Effects of yeast selenium and probiotics on prduction performance and serum biochemical indexes of Roman laying hens[J].Feed Research,2022,45(3):53-57.(in Chinese) [17] 陈丽艳.复合微生态制剂对肉仔鸡蛋白质代谢的影响[J].甘肃畜牧兽医,2017,47(9):104-106.CHEN L Y.Effect of compound microecological agent on protein metabolism in broilers[J].Gansu Animal Husbandry and Veterinary Medicine,2017,47(9):104-106.(in Chinese) [18] DE VADDER F,KOVATCHEVA-DATCHARY P,GONCALVES D,et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell,2014,156(1-2):84-96. [19] DUNCAN S H,HOLTROP G,LOBLEY G E,et al.Contribution of acetate to butyrate formation by human faecal bacteria[J].The British Journal of Nutrition,2004,91(6):915-923. [20] FALONY G,VLACHOU A,VERBRUGGHE K,et al.Cross-feeding between Bifidobacterium longum BB536 and acetate-converting,butyrate-producing colon bacteria during growth on oligofructose[J].Applied and Environmental Microbiology,2006,72(12):7835-7841. [21] BELENGUER A,DUNCAN S H,CALDER A G,et al.Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut[J].Applied and Environmental Microbiology,2006,72(5):3593-3599. [22] MARTIN A,SEREBRINSKY-DUEK K,RIQUELME E,et al.Microbial interactions and the homeostasis of the gut microbiome:The role of Bifidobacterium[J].Microbiome Research Reports,2023,2(3):17. [23] COTTER P D,HILL C,ROSS R P.Bacteriocins:Developing innate immunity for food[J].Nature Reviews.Microbiology,2005,3(10):777-788. [24] SABATÉ D C,AUDISIO M C.Inhibitory activity of surfactin,produced by different Bacillus subtilis subsp. subtilis strains,against Listeria monocytogenes sensitive and bacteriocin-resistant strains[J].Microbiological Research,2013,168(3):125-129. [25] STEIN T. Bacillus subtilis antibiotics:Structures,syntheses and specific functions[J].Molecular Microbiology,2005,56(4):845-857. [26] CORR S C,LI Y,RIEDEL C U,et al.Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118[J].Proceedingsof the National Academy of Sciences of the United States of America,2007,104(18):7617-7621. [27] CAULIER S,NANNAN C,GILLIS A,et al.Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group[J].Frontiers in Microbiology,2019,10:302. [28] KOPONEN O,TOLONEN M,QIAO M,et al.NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin[J].Microbiology (Reading,England),2002,148(Pt 11):3561-3568. [29] XIE L,MILLER L M,CHATTERJEE C,et al.Lacticin 481:In vitro reconstitution of lantibiotic synthetase activity[J].Science (New York,N.Y.),2004,303(5658):679-681. [30] LINNETT P E,STROMINGER J L.Additional antibiotic inhibitors of peptidoglycan synthesis[J].Antimicrobial Agents and Chemotherapy,1973,4(3):231-236. [31] GHOSH C,SARKAR P,ISSA R,et al.Alternatives to conventional antibiotics in the era of antimicrobial resistance[J].Trends in Microbiology,2019,27(4):323-338. [32] DUBOIS J Y,KOUWEN T R,SCHURICH A K,et al.Immunity to the bacteriocin sublancin 168 is determined by the SunI (YolF) protein of Bacillus ssubtilis[J].Antimicrobial Agents and Chemotherapy,2009,53(2):651-661. [33] FLISSI A,RICART E,CAMPART C,et al.Norine:Update of the nonribosomal peptide resource[J].Nucleic Acids Research,2020,48(D1):D465-D469. [34] CAO X H,LIAO Z Y,WANG C L,et al.Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive,antimicrobial and antitumor activities[J].Brazilian Journal of Microbiology,2009,40(2):373-379. [35] KUGLER M,LOEFFLER W,RAPP C,et al.Rhizocticin A,an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633:Biological properties[J].Archives of Microbiology,1990,153(3):276-281. [36] SIEWERT G,STROMINGER J L.Bacitracin:An inhibitor of the dephosphorylation of lipid pyrophosphate,an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls[J].Proceedings of the National Academy of Sciences of the United States of America,1967,57(3):767-773. [37] FANG L,GUELL M,CHURCH G M,et al.Heterologous erythromycin production across strain and plasmid construction[J].Biotechnology Progress,2018,34(1):271-276. [38] MAIER L,GOEMANS C V,WIRBEL J,et al.Unravelling the collateral damage of antibiotics on gut bacteria[J].Nature,2021,599(7883):120-124. [39] ZWEERINK M M,EDISON A.Difficidin and oxydifficidin:Novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis.Ⅲ.Mode of action of difficidin[J].The Journal of Antibiotics,1987,40(12):1692-1697. [40] WU T,XIAO F,LI W.Macrolactins:Biological activity and biosynthesis[J].Marine Life Science & Technology,2021,3(1):62-68. [41] MVLLER S,STRACK S N,HOEFLER B C,et al.Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus[J].Applied and Environmental Microbiology,2014,80(18):5603-5610. [42] WAN C,FAN X,LOU Z,et al.Iturin:Cyclic lipopeptide with multifunction biological potential[J].Critical Reviews in Food Science and Nutrition,2022,62(29):7976-7988. [43] MONTVILLE T J,CHEN Y.Mechanistic action of pediocin and nisin:Recent progress and unresolved questions[J].Applied Microbiology and Biotechnology,1998,50(5):511-519. [44] PARISOT J,CAREY S,BREUKINK E,et al.Molecular mechanism of target recognition by subtilin,a class Ⅰ lanthionine antibiotic[J].Antimicrobial Agents and Chemotherapy,2008,52(2):612-618. [45] FUKUDA S,TOH H,TAYLOR T D,et al.Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters[J].Gut Microbes,2012,3(5):449-454. [46] ISLAM T,RABBEE M F,CHOI J,et al.Biosynthesis,molecular regulation,and application of bacilysin produced by Bacillus species[J].Metabolites,2022,12(5):397. [47] PIEWNGAM P,ZHENG Y,NGUYEN T H,et al.Pathogen elimination by probiotic Bacillus via signalling interference[J].Nature,2018,562(7728):532-537. [48] DERIU E,LIU J Z,PEZESHKI M,et al.Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron[J].Cell Host & Microbe,2013,14(1):26-37. [49] KIM S,COVINGTON A,PAMER E G.The intestinal microbiota:Antibiotics,colonization resistance,and enteric pathogens[J].Immunological Reviews,2017,279(1):90-105. [50] HYMES J P,JOHNSON B R,BARRANGOU R,et al.Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM[J].Applied and Environmental Microbiology,2016,82(9):2676-2685. [51] LEBEER S,VERHOEVEN T L,FRANCIUS G,et al.Identification of a gene cluster for the biosynthesis of a long,galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase[J].Applied and Environmental Microbiology,2009,75(11):3554-3563. [52] BENE K P,KAVANAUGH D W,LECLAIRE C,et al. Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors[J].Frontiers in Microbiology,2017,8:321. [53] O’CONNELL M M,ZOMER A,LEAHY S C,et al.Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(27):11217-11222. [54] MUÑOZ-PROVENCIO D,PÉREZ-MARTÍNEZ G,MONEDERO V.Characterization of a fibronectin-binding protein from Lactobacillus casei BL23[J].Journal of Applied Microbiology,2010,108(3):1050-1059. [55] KIM Y,KIM S H,WHANG K Y,et al.Inhibition of Escherichia coli O157∶H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells[J].Journal of Microbiology and Biotechnology,2008,18(7):1278-1285. [56] WU Y,JHA R,LI A,et al.Probiotics (Lactobacillus plantarum HNU082) supplementation relieves ulcerative colitis by affecting intestinal barrier functions,immunity-related gene expression,gut microbiota,and metabolic pathways in mice[J].Microbiology Spectrum,2022,10(6):e165122. [57] FITZGERALD K A,KAGAN J C.Toll-like receptors and the control of immunity[J].Cell,2020,180(6):1044-1066. [58] INOHARA N,NUÑEZ G.NODs:Intracellular proteins involved in inflammation and apoptosis[J].Nature Reviews.Immunology,2003,3(5):371-382. [59] KIM Y G,OHTA T,TAKAHASHI T,et al.Probiotic Lactobacillus casei activates innate immunity via NF-kappaB and p38 MAP kinase signaling pathways[J].Microbes and Infection,2006,8(4):994-1005. [60] CROSS M L,GANNER A,TEILAB D,et al.Patterns of cytokine induction by Gram-positive and Gram-negative probiotic bacteria[J].FEMS Immunology and Medical Microbiology,2004,42(2):173-180. [61] YAN F,POLK D B.Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells[J].The Journal of Biological Chemistry,2002,277(52):50959-50965. [62] MOHAMADZADEH M,OLSON S,KALINA W V,et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(8):2880-2885. [63] REY J,GARIN N,SPERTINI F,et al.Targeting of secretory IgA to Peyer’s patch dendritic and T cells after transport by intestinal M cells[J].Journal of Immunology,2004,172(5):3026-3033. [64] VINDEROLA G,MATAR C,PERDIGON G.Role of intestinal epithelial cells in immune effects mediated by Gram-positive probiotic bacteria:Involvement of Toll-like receptors[J].Clinical and Diagnostic Laboratory Immunology,2005,12(9):1075-1084. [65] JIA D J,WANG Q W,HU Y Y,et al.Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206+ macrophagesIL-10 activation[J].Gut Microbes,2022,14(1):2145843. [66] GU T,DUAN M,ZHANG R,et al.Probiotic fermented feed alleviates liver fat deposition in Shaoxing ducks via modulating gut microbiota[J].Frontiers in Microbiology,2022,13:928670. [67] LIU Y,LI Y,FENG X,et al.Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism,meat quality,and the amino acid and fatty acid composition of Peking ducks[J].Poultry Science,2018,97(9):3218-3229. [68] ZHAN H Q,DONG X Y,LI L L,et al.Effects of dietary supplementation with Clostridium butyricum on laying performance,egg quality,serum parameters,and cecal microflora of laying hens in the late phase of production[J].Poultry Science,2019,98(2):896-903. [69] 李莹,张庆华,钟丽娟,等.丁酸梭菌对白羽肉鸡生长性能、免疫功能和肠道健康的影响[J].动物营养学报,2023,35(8):5023-5035.LI Y,ZHANG Q H,ZHONG L J,et al.Effects of Clostridium butyricum on growth performance,immune function and intestine health of White-feathered broilers[J] Chinese Journal of Animal Nutrition,2023,35(8):5023-5035.(in Chinese) [70] XU J,LI Y,YANG Z,et al.Yeast probiotics shape the gut microbiome and improve the health of early-weaned piglets[J].Frontiers in Microbiology,2018,9:2011. [71] WANG K,CAO G,ZHANG H,et al.Effects of Clostridium butyricum and Enterococcus faecalis on growth performance,immune function,intestinal morphology,volatile fatty acids,and intestinal flora in a piglet model[J].Food & Function,2019,10(12):7844-7854. [72] 王晓丹,孔祥峰,赵越,等.枯草芽孢杆菌对断奶仔猪生长性能和血浆生化参数的影响[J].动物营养学报,2019,31(2):605-611.WANG X D,KONG X F,ZHAO Y,et al.Effects of Bacillus subtilis on growth performance and plasma biochemical parameters of weaned piglets[J] Chinese Journal of Animal Nutrition,2019,31(2):605-611.(in Chinese) [73] MIKULSKI D,JANKOWSKI J,NACZMANSKI J,et al.Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance,nutrient digestibility,egg traits,egg yolk cholesterol,and fatty acid profile in laying hens[J].Poultry Science,2012,91(10):2691-2700. [74] MOHAMMED A A,ZAKI R S,NEGM E A,et al.Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens[J].Poultry Science,2021,100(3):100906. [75] ROSS G R,VAN NIEUWENHOVE C P,GONZÁLEZ S N.Fatty acid profile of pig meat after probiotic administration[J].Journal of Agricultural and Food Chemistry,2012,60(23):5974-5978. [76] MENG Q W,YAN L,AO X,et al.Influence of probiotics in different energy and nutrient density diets on growth performance,nutrient digestibility,meat quality,and blood characteristics in growing-finishing pigs[J].Journal of Animal Science,2010,88(10):3320-3326. [77] TIAN Z,CUI Y,LU H,et al.Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality,muscular amino acids and fatty acids in pigs[J].Meat Science,2021,171:108234. [78] YANG C M,CAO G T,FERKET P R,et al.Effects of probiotic, Clostridium butyricum,on growth performance,immune function,and cecal microflora in broiler chickens[J].Poultry Science,2012,91(9):2121-2129. [79] WU Y,WANG B,ZENG Z,et al.Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function,antioxidative capacity,apoptosis,immune response,and biochemical parameters in broilers[J].Poultry Science,2019,98(10):5028-5039. [80] SHIN D,CHANG S Y,BOGERE P,et al.Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs[J].PLoS One,2019,14(8):e220843. [81] LIANG J,KOU S,CHEN C,et al.Effects of Clostridium butyricum on growth performance,metabonomics and intestinal microbial differences of weaned piglets[J].BMC Microbiology,2021,21(1):85. [82] HE Y,KIM K,KOVANDA L,et al.Bacillus subtilis:A potential growth promoter in weaned pigs in comparison to carbadox[J].Journal of Animal Science,2020,98(9):skaa290. [83] NAM N H,TRUONG N D,THANH D,et al.Bacillus subtilis QST 713 supplementation during late gestation in gilts reduces stillbirth and increases piglet birth weight[J].Veterinary Medicine International,2022,2022:2462241. [84] HAN M,LEI W,LIANG J,et al.The single-cell modification strategies for probiotics delivery in inflammatory bowel disease:A review[J].Carbohydrate Polymers,2024,324:121472. [85] 朱则刚.简析养殖饲用微生态制剂的生产加工工艺[J].养禽与禽病防治,2019,11:2-4.ZHU Z G. Briefly analyza the production and processing technology of microecological preparations for breeding and feeding [J].Poultry Raising and Avain Disease Control,2019,11:2-4. (in Chinese) [86] SUEZ J,ZMORA N,ZILBERMAN-SCHAPIRA G,et al.Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J].Cell,2018,174(6):1406-1423. [87] 张和平,高广琦.基于人工智能的益生乳酸菌精准筛选及产业化关键技术[J].中国食品学报,2023,23(6):1-7.ZHANG G H,GAO G Q.The key technologies of precise isolation and industrialization of probiotic lactic acid bacteria based on artificial intelligence [J] Journal of Chinese Institute of Food Science and Technology,2023,23(6):1-7.(in Chinese) [88] DE SIMONE C.The unregulated probiotic market[J].Clinical Gastroenterology and Hepatology,2019,17(5):809-817. [89] XIE A,JI H,LIU Z,et al.Modified prebiotic-based “Shield” armed probiotics with enhanced resistance of gastrointestinal stresses and prolonged intestinal retention for synergistic alleviation of colitis[J].ACS Nano,2023,17(15):14775-14791. [90] HOLKEM A T,SILVA M,FAVARO-TRINDADE C S.Probiotics and plant extracts:A promising synergy and delivery systems[J].Critical Reviews in Food Science and Nutrition,2023,63(28):9561-9579. [91] YIN Y,LI Z,GAO H,et al.Microfluidics-derived microparticles with prebiotics and probiotics for enhanced in situ colonization and immunoregulation of colitis[J].Nano Letters,2024,24(4):1081-1089. [92] CAO F,JIN L,GAO Y,et al.Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis[J].Nature Nanotechnology,2023,18(6):617-627. [93] MA L,ZHENG J J,ZHOU N,et al.A natural biogenic nanozyme for scavenging superoxide radicals[J].Nature Communications,2024,15(1):233. [94] CAO F,JIN L,ZHANG C,et al.Engineering clinically relevant probiotics with switchable "nano-promoter" and "nano-effector" for precision tumor therapy[J].Advanced Materials,2024,36(5):e2304257. [95] MA J,LYU Y,LIU X,et al.Engineered probiotics[J].Microbial Cell Factories,2022,21(1):72. [96] REID G,GAUDIER E,GUARNER F,et al.Responders and non-responders to probiotic interventions:How can we improve the odds?[J].Gut Microbes,2010,1(3):200-204. [97] KHAN M T,DWIBEDI C,SUNDH D,et al.Synergy and oxygen adaptation for development of next-generation probiotics[J].Nature,2023,620(7973):381-385. |
[1] | 张关锋, 宋先凡, 闫昭明, 杨小进, 郑梦莉, 刘雅婷, 陈清华. 饲粮中添加超氧化物歧化酶对肉鸡生长性能、免疫性能、抗氧化能力和肠道功能的影响[J]. 中国畜牧兽医, 2025, 52(5): 1987-1998. |
[2] | 范秋丽, 陶正国, 李辉, 苟钟勇, 王一冰, 林厦菁, 叶金玲, 蒋守群. α-倒捻子素对肉鸡生长性能、免疫功能、抗氧化能力和解毒功能的影响[J]. 中国畜牧兽医, 2025, 52(3): 1123-1130. |
[3] | 计峰, 叶满红, 汤锋. 竹醋在猪、鸡生产中的应用研究进展[J]. 中国畜牧兽医, 2025, 52(3): 1141-1149. |
[4] | 李晶, 董滢. 枯草芽孢杆菌对保育猪生长性能、肠道形态、血清生化和免疫指标的影响[J]. 中国畜牧兽医, 2025, 52(2): 678-685. |
[5] | 刘世雄, 李啸, 李薛强, 徐子萱, 李松建, 杜蕊, 薛晨, 刘大程. 复合菌培养物对蒙寒杂交肉羊生长性能、免疫功能及疫苗抗体效价的影响[J]. 中国畜牧兽医, 2025, 52(2): 718-729. |
[6] | 郭佳佳, 聂晶, 曲久, 旦增占都, 李小伟, 江明锋, 刘益丽. 抗菌肽抑菌作用机制及在畜禽中的应用[J]. 中国畜牧兽医, 2025, 52(2): 934-945. |
[7] | 乔常宏, 陈翔宇, 刘宝玲, 罗琴, 刘丁语, 何振文, 王晓虎, 陈晶, 张翩, 黄元, 白挨泉, 王刚, 蔡汝健. 多组学视角下中药抗菌机制研究进展[J]. 中国畜牧兽医, 2025, 52(1): 52-59. |
[8] | 陈春红, 沈俊烨, 代重山, 汤树生. 松萝酸的抗菌活性及其开发利用研究进展[J]. 中国畜牧兽医, 2025, 52(1): 400-410. |
[9] | 廖慧群, 赵美, 曾国辉, 苏仁伟, 邓衔柏. 林麝源肺炎克雷伯菌耐药性及毒力基因分析[J]. 中国畜牧兽医, 2025, 52(1): 411-421. |
[10] | 孙丽, 谭冰冰, 李长琼, 袁欣怡, 潘源虎. 细菌内抗菌药物积累测定方法研究进展[J]. 中国畜牧兽医, 2025, 52(1): 451-460. |
[11] | 周玲玲, 王宇航, 李亦菲, 柴永乐, 张明亮, 张元臣, 连凯琪. 抗菌肽LL-1的鉴定和生物学特性研究[J]. 中国畜牧兽医, 2025, 52(1): 491-497. |
[12] | 李贞明, 马现永, 容庭, 崔艺燕, 宋敏, 刘志昌, 邓盾, 田志梅, 余苗. 胍基乙酸对育肥猪生长性能、血清生化指标、抗氧化能力和免疫功能的影响[J]. 中国畜牧兽医, 2024, 51(8): 3311-3319. |
[13] | 冉扬, 邱洁, 申小云. 湖羊对天蚕素抗菌肽的响应[J]. 中国畜牧兽医, 2024, 51(8): 3385-3393. |
[14] | 张艳, 马森, 栗守仁, 皇甫卫康, 腊邵凯, 马季祥, 王志昌, 史莹华. 苜蓿皂苷提取物对断奶湖羊免疫、抗氧化能力和瘤胃微生物区系的影响[J]. 中国畜牧兽医, 2024, 51(7): 2799-2809. |
[15] | 丁辉, 刘欣, 王瑞玲, 毛永霞, 王建东, 郭延生. 饲粮中添加大豆异黄酮对安格斯肉牛生产及繁殖性能的影响[J]. 中国畜牧兽医, 2024, 51(7): 2871-2879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||