›› 2012, Vol. 39 ›› Issue (10): 121-127.
马露1,2, 周凌云1, 卜登攀1, 闫素梅2, 张养东1, 孙鹏1, 赵小伟1
收稿日期:
2012-02-07
出版日期:
2012-10-20
发布日期:
2012-10-19
通讯作者:
周凌云(1977-),女,助理研究员,从事反刍动物营养与牛奶品质改良。E-mail:zhoulingyun2012@gmail.com
E-mail:zhoulingyun2012@gmail.com
作者简介:
马露(1984-),女,内蒙古人,博士生,研究方向:动物营养与畜产品品质。
基金资助:
MA Lu1,2, ZHOU Ling-yun1, BU Deng-pan1, YAN Su-mei2, ZHANG Yang-dong1, SUN Peng1, ZHAO Xiao-wei1
Received:
2012-02-07
Online:
2012-10-20
Published:
2012-10-19
摘要: 乳蛋白作为乳中重要的组成成分,含有人体所需的几乎所有必需氨基酸。然而,奶牛乳蛋白的合成受很多因素影响,如日粮组成、遗传因素、饲养环境等,但具体影响机制尚不明确。因此,研究乳蛋白合成机理,结合营养调控措施提高其在乳中的含量,成为目前研究的热点和重点。作者就目前日粮营养水平对奶牛乳蛋白合成的影响及其作用机理的研究进行了综述。
中图分类号:
马露, 周凌云, 卜登攀, 闫素梅, 张养东, 孙鹏, 赵小伟. 日粮营养水平对奶牛乳蛋白合成的影响及其作用机理的研究进展[J]. , 2012, 39(10): 121-127.
MA Lu, ZHOU Ling-yun, BU Deng-pan, YAN Su-mei, ZHANG Yang-dong, SUN Peng, ZHAO Xiao-wei. Research Progress of the Nutrition Level and the Mechanism Affecting the Synthesis of Milk Protein in Dairy Cow[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(10): 121-127.
1 王建华, 戈新, 王洪荣,等. 日粮对奶牛限制性氨基酸的影响和调控途径[J]. 中国畜牧杂志, 2007,43(7):40~43. 2 王俊锋, 黄静龙, 梁国义. 泌乳反刍动物乳蛋白的合成机理及调控途径的研究[J]. 饲料工业, 2005, 25(7):13~17. 3 厉学武, 吕娟, 王利华,等. 乳蛋白影响因素及营养调控的研究技术[J]. 饲料工业, 2009, 30(15):10~13. 4 李喜艳, 王加启, 魏宏阳,等. 反刍动物乳腺氨基酸的吸收与代谢[J]. 中国奶牛, 2011(2),11~14. 5 陈智梅, 高民, 白英. 反刍动物乳蛋白的合成机理及其营养调控[J]. 中国奶牛, 2008(12):22~24. 6 赵学军, 吴慧慧, 刘建新,等. 奶牛氨基酸营养及其对乳蛋白分泌的影响[J]. 饲料研究, 2003, 12:21~23. 7 徐元年, 张幸开, 袁耀明. 过瘤胃赖氨酸和过瘤胃蛋氨酸对泌乳早期奶牛生产性能影响的研究[J]. 乳业科学与技术, 2007, 122(1):43~45. 8 Appuhamy J A D R N, Knapp J R, Becvar O, et al. Effects of jugular-infused lysine, methionine, and branched-chain amino acids on milk protein synthesis in high-producing dairy cows[J]. J Dairy Sci, 2011, 94(4):1952~1960. 9 Armentano L E. Impact of metabolism by extra gastrointestinal tissues on secretory rate of milk proteins[J]. J Dairy Sci, 1994, 77:2809~2820. 10 Backwell F R, Bequette B J, Wilson D, et al. Evidence for the utilization ofpeptides for milk protein synthesis in the lactating dairy goat in vivo[J]. American Journal of Physiology,1996, 271(4):955~960. 11 Barash I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin and rapamycin-sensitive pathway[J]. Mol Cell Endocrinol, 1999, 155:37~49. 12 Bateman H G, Spain J N, Kerley M S, et al. Evaluation of ruminally protected methionine and lysine or blood meal and fish meal as protein sources for lactating Holsteins[J]. J Dairy Sci, 1999, 82(10):2115~2120. 13 Baumrucker C R. Amino acid transport systems in bovine mammary tissue[J]. J Dairy Sci, 1985, 68(9):2436~2451. 14 Bequette B J, Backwell F R C, Crompton L A. Current concepts of amino acid and protein metabolism in the mammary gland of the lactating ruminant[J]. J Dairy Sci, 1998, 81:2540~2559. 15 Bequette B J, Hanigan M D, Lapierre H. Mammary uptake and metabolism of amino acids by lactating ruminants[M].Walling ford: Amino Acids in Animal Nutrition, 2003. 16 Broderick G A, Stevenson M J, Patton R A. Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows[J]. J Dairy Sci, 2009, 92(6):2719~2728. 17 Broderick G A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows[J]. J Dairy Sci, 2003, 86(4):1370~1381. 18 Burgos S A, Dai M, Cant J P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J]. J Dairy Sci, 2010, 93(1):153~161. 19 Burke F, O’Donovan M A, Murphy J J, et al. Effect of pasture allowance and supplementation with maize silage and concentrates differing in crude protein concentration on milk production and nitrogen excretion by dairy cows[J]. Livestock Science, 2008, 114(2~3):325~335. 20 Cho J, Overton T R, Schwab C G, et al. Determining the amount of rumen-protected methionine supplement that corresponds to the optimal levels of methionine in metabolizable protein for maximizing milk protein production and profit on dairy farms[J]. J Dairy Sci, 2007, 90(10): 4980~4916. 21 Cressman S G, Grieve D G, Macleod G K, et al. Influence of dietary protein concentration on milk production of dairy cattle in early lactation[J]. J Dairy Sci, 1980, 63:1839~1847. 22 Davis S R, Mepham T B. Metabolism of L-(U-14C)valine, L-(U-14C) leucine, L-(U-14C)histidine and L-(U-14C) phenylalanine by the isolated perfused lactating guinea-pig mammary gland[J]. Biochemical Journal, 1976, 156(3):553~560. 23 DePeters E J, Cant J P. Nutritional factors influencing the nitrogen composition of bovine milk: A review[J]. J Dairy Sci, 1992, 75:2043~2070. 24 Dinn N E, Shelford J A, Fisher L J. Use of the cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows[J]. J Dairy Sci, 1998, 81:229~237. 25Doepel L, Lapierre H. Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions[J]. J Dairy Sci, 2010, 93(7):3264~3274. 26 Gabriela A, Adriana L,Guillermo O.Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregancy, lactation, and weaning[J]. Metabolism Clinical and Experimental, 2009(58):594~601. 27 Gingras A C, Raught B, Sonenberg N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation[J]. Annu Rev Biochem, 1999, 68:913~963. 28 Guinard J, Rulquin H, Verite R. Effect of graded levels of duodenal infusions of casein on mammary uptake in lactating cows. 1. Major nutrients[J]. J Dairy Sci, 1994, 77:2221~2231. 29 Hanigan M D, France J, Mabjeesh S J, et al. High rates of mammary tissue protein turnover in lactating goats are energetically costly[J]. J Nutr, 2009, 139:1118~1127. 30 Hara K, Yonezawa K, Weng Q P, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism[J]. J Biol Chem, 1998, 273:14484~14494. 31 Hayashi A A, Nones K, Roy N C, et al. Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation[J]. J Dairy Sci, 2009, 92(5):1889~1899. 32 Hongerholt D D, Muller L D. Supplementation of rumen-undegradable protein to the diets of early lactation holstein cows on grass pasture[J]. J Dairy Sci, 1998, 81(8):2204~2214. 33 Houdebine L M, Djiane J, Dusanter-Fourt I, et al. Hormonal action controlling mammary activity[J]. J Dairy Sci, 1985, 68(2):489~500. 34 Hristov A N, Ropp J K. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows[J]. J Dairy Sci, 2003, 86(7):2416~2427. 35 Ingunn S, Harald V, Lars B. Effects of energy balance and metabolizable protein level on tissue mobilization and milk performance of dairy cows in early lactation[J]. Livestock Production Science, 2005, 95(1~2):35~47. 36 Ipharraguerre I R, Clark J H. Varying protein and starch in the diet of dairy cows. Ⅱ. Effects on performance and nitrogen utilization for milk production[J]. J Dairy Sci, 2005, 88:2556~2570. 37 Jenkins T C, McGuire M A. Major advances in nutrition: Impact on milk composition[J]. J Dairy Sci, 2006, 89(4):1302~1310. 38 Kalscheur K F, Baldwin V I R L, Glenn B P, et al. Milk production of dairy cows fed differing concentrations of rumen-degraded protein[J]. J Dairy Sci, 2006, 89(1):249~259. 39 Kalscheur K F, Vandersall J H, Erdman R A, et al. Effects of dietary crude protein concentration and degradability on milk production responses of early, mid, and late lactation dairy cows[J]. J Dairy Sci, 1999, 82(3):545~554. 40 Keady T W J, Mayne C S, Fitzpatrick D A. The effects of concentrate energy source on milk composition of lactating dairy cattle offered grass silages[J]. Animal Science, 1998, 66:21~23. 41 Kebreab E, Castillo A R, Beever D E, et al. Effects of management practices prior to and during ensiling and concentrate type on nitrogen utilization in dairy cows[J]. J Dairy Sci, 2000, 83(6):1274~1285. 42 Khalili H, Kuusela E, Suvitie M,et al. Effect of protein and energy supplements on milk production in organic farming[J]. Animal Feed Science and Technology, 2002, 98(1~2):103~119. 43 Leonardi C, Stevenson M, Armentano L E. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows[J]. J Dairy Sci, 2003, 86(12):4033~4042. 44 Liu H, Wang L, Li S L, et al. Effect of duodenal soybean small peptides infusion on mammary uptake of amino acid and expression of ANP in lactating goat[J]. Chinese Journal of Animal and Veterinary Sciences, 2009, 28:31~37. 45 Long X, Lin Y, Ortiz-Vega S, et al. Rheb binds and regulates the mTOR kinase[J]. Curr Biol, 2005, 15:702~713. 46 Ma X M, Blenis J. Molecular mechanisms of mTOR mediated translational control[J]. Nat Rev Mol Cell Biol, 2009, 10:307~318. 47 Mabjeesh S J, Kyle C E, MacRae J C, et al. Lysine metabolism by the mammary gland of goats at two stages of lactation[J]. J Dairy Sci, 2000, 83:996~1003. 48 Mackle T R, Dwyer D A, Ingvartsen K L, et al. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis[J]. J Dairy Sci, 2000, 83(1):93~105. 49 Mepham T B, Gaye P, Martin P,et al. Biosynthesis of milk proteins. In: Advanced Dairy Chemistry. Proteins, 1992(1): 491~543. 50 Metcalf J A, Crompton L A, Wray-Cahen D, et al. Responses in milk constituents to intravascular administration of two mixtures of amino acids to dairy cows[J]. J Dairy Sci, 1996a, 79(8):1425~1429. 51 Metcalf J A, Wray-Cahen D, Chettle E E, et al. The effect of dietary crude protein as protected soybean meal on mammary metabolism in the lactating dairy cow[J]. J Dairy Sci, 1996b, 79(4) : 603~611. 52 Misciattelli L,Kristensen V F, Vestergaard M, et al. Milk production, nutrient utilization and endocrine responses to increased post ruminal lysine and met-hionine supply in dairy cows[J]. J Dairy Sci, 2003, 86: 275~286. 53 Noftsger S, St-Pierre N R. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production[J]. J Dairy Sci, 2003, 86(3):958~969. 54 Olmos Colmenero J J, Broderick G A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows[J]. J Dairy Sci, 2006, 89(5):1704~1712. 55 Pivi Mntysaari, Pekka H, Juha N, et al. The effect of concentrate crude protein content and feeding strategy of total mixed ration on performance of primiparous dairy cows[J]. Livestock Production Science, 2004, 85(2~3):223~233. 56 Phipps R H, Sutton J D, Humphries D J, et al. A comparison of the effects of cracked wheat and sodium hydroxide-treated wheat on food intake, milk production and rumen digestion in dairy cows given maize silage diets[J]. Animal Science, 2001, 72: 585~594. 57 Proud C G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery[J]. Biochem J, 2007, 403:217~234. 58 Raggio G, Lemosquet S, Lobley G E, et al. Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows[J]. J Dairy Sci, 2006, 89(11):4340~4351. 59 Raggio G, Pacheco D, Berthiaume R, et al. Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows[J]. J Dairy Sci, 2004, 87(10):3461~3472. 60 Reynolds C K, Cammell S B, Humphries D J, et al. Effects of postrumen starch infusion on milk production and energy metabolism in dairy cows[J]. J Dairy Sci, 2001, 84(10):2250~2259. 61 Rius A G, Appuhamy J A D R N, Cyriac J, et al. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids[J]. J Dairy Sci, 2010, 93(7):3114~3127. 62 Rius A G, McGilliard M L, Umberger C A, et al. Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow[J]. J Dairy Sci, 2010, 93(5):2034~2043. 63 Robinson P H. Impacts of manipulating ration metabolizable lysine and methionine levels on the performance of lactating dairy cows: A systematic review of the literature[J]. Livestock Science, 2010, 127(2~3):115~126. 64 Sancak Y, Thoreen C C, Peterson T R, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase[J]. Mol Cell, 2007, 25:903~915. 65 Socha M T, Putnam D E, Garthwaite B D, et al. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine[J]. J Dairy Sci, 2005, 88:1113~1126. 66 Stokes S R, Hoover W H, Miller T K, et al. Ruminal digestion and microbial utilization of diets varying in type of carbohydrate and protein[J]. J Dairy Sci, 1991a, 74:871~881. 67 Stokes S R, Hoover W H, Miller T K, et al. Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture[J]. J Dairy Sci, 1991b, 74:860~870. 68 Tagari H, WebbJr K E, Theurer B, et al. Mammary uptake, portal drained visceral flux, and hepatic metabolism of free and peptide bound amino acids in cows fed steam flaked or dry rolled sorghum grain diets[J]. J Dairy Sci, 2008, 91:679~697. 69 Toerien C A, Cant J P. Abundance and phosphorylation state of translation initiation factors in mammary glands of lactating and nonlactating dairy cows[J]. J Dairy Sci, 2007, 90(6):2726~2734. 70 Toerien C A, Trout D R, Cant J P. Effect of nutrients on p70S6K activation in the bovine mammary gland[J]. J Anim Feed Sci, 2004, 13(Suppl.1):449~452. 71 Toerien C A, Trout D R, Cant J P. Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal S6 kinase 1[J]. J Nutr, 2010, 140: 285~292. 72 Wang C, Liu H Y, Wang Y M, et al. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows[J]. J Dairy Sci, 2010, 93(8):3661~3670. 73 Wang C, Liu J X, Yuan Z P, et al. Effect of level of metabolizable protein on milk production and nitrogen utilization in lactating dairy cows[J]. J Dairy Sci, 2007, 90(6):2960~2965. 74 Wilks D L, Coppock C E, Brooks K N. Effects of differences in starch content of diets with whole cottonseed or rice bran on milk[J]. J Dairy Sci, 1991, 74:1314~1320. 75 Yang X, Yang C, Farberman A, et al. The mammalian target of rapamycin signaling pathway in regulating metabolism and growth[J]. J Anim Sci, 2008, 86(Suppl.14):E35~E50. |
[1] | 刘志旭, 韩文昌, 李彦芹, 张利文, 刘燕, 苑昭伟, 李建斌, 王晓, 曹荣峰. 山东地区隐性乳房炎牛乳中β-内酰胺酶blaZ基因与微生物相关性研究[J]. 中国畜牧兽医, 2025, 52(5): 2318-2327. |
[2] | 韩雨润, 史远刚, 康晓龙. 奶牛反刍行为影响因素及其智能化监测方法的应用[J]. 中国畜牧兽医, 2025, 52(4): 1554-1566. |
[3] | 李扬, 徐晶晶, 张小玉, 李娜娜, 余星雨, 冷青文, 李彦芳, 屈勇刚. 新疆某规模化奶牛场乳源金黄色葡萄球菌的分离鉴定、耐药分析及毒力基因检测[J]. 中国畜牧兽医, 2025, 52(3): 1370-1382. |
[4] | 刘拓, 成志强, 成喆, 臧长江, 南冰禹, 李韬, 李晓斌, 李云梦, 仇娅琪, 闫法钰, 吴海荣, 院东, 王永力, 刘文涛. 烟酰胺对泌乳期奶牛瘤胃发酵参数、微生物蛋白产量和微生物区系的影响[J]. 中国畜牧兽医, 2025, 52(2): 593-604. |
[5] | 任美奕, 梁洪秀, 李璨, 冯鸣鹊, 谢琴娜, 宋德源, 刘明超, 高健, 程佳. 基于不同ST型肺炎克雷伯菌感染的小鼠乳腺炎模型的差异分析[J]. 中国畜牧兽医, 2025, 52(1): 422-431. |
[6] | 马洪鹏, 邵伟, 娄肖肖, 高姣姣, 马宪兰, 陈贺, 郑楠, 赵艳坤. 新疆部分地区奶牛源大肠杆菌的流行性与耐药性分析[J]. 中国畜牧兽医, 2025, 52(1): 470-480. |
[7] | 姚伟佳, 罗春海, 刘佳金, 王薇, 李丹阳, 刘炳琦, 付世新. 过表达miRNA-424-5p靶向AKT3对奶牛子宫内膜上皮细胞凋亡的影响[J]. 中国畜牧兽医, 2024, 51(8): 3635-3642. |
[8] | 何兴丽, 周佩瑶, 张小雪, 牟泉宙, 李杨, 王昭元, 刘鹏, 王梓, 宋杨阳, 李晓琳, 沈冰蕾. 金黄色葡萄球菌和表皮葡萄球菌对奶牛中性粒细胞炎性因子分泌的影响[J]. 中国畜牧兽医, 2024, 51(8): 3676-3686. |
[9] | 黄越川, 张海亮, 徐伟, 韩丽云, 周佳敏, 马丽琴, 温万, 王雅春. 宁夏地区奶牛体型外貌性状遗传参数估计[J]. 中国畜牧兽医, 2024, 51(7): 2908-2922. |
[10] | 冀国尚, 盛辉, 张俊星, 冯雪, 户春丽, 王雅春, 马燕芬, 李莉, 杨文飞, 马云. PCYOX1L基因调控LPS诱导的牛子宫内膜上皮细胞的功能研究[J]. 中国畜牧兽医, 2024, 51(7): 2984-2997. |
[11] | 赵孝凤, 郭刚, 曹杰, 王雅春, 张毅. 中国荷斯坦牛健康性状遗传参数估计[J]. 中国畜牧兽医, 2024, 51(6): 2501-2507. |
[12] | 宝华, 户春丽, 安彦昊, 张春华, 马燕芬. 表没食子儿茶素没食子酸酯对脂多糖诱导的奶牛乳腺上皮细胞炎性损伤和凋亡的干预作用[J]. 中国畜牧兽医, 2024, 51(5): 2122-2131. |
[13] | 马小雪, 龙锐, 牛玉杰, 郭红勇, 罗瑞卿, 吴妍妍, 张文举. 围产期饲粮中添加异位酸对奶牛瘤胃发酵参数、瘤胃微生物和生产性能的影响[J]. 中国畜牧兽医, 2024, 51(4): 1428-1437. |
[14] | 张腾龙, 郭晨阳, 钟华晨, 刘嘉琳, 宋洁, 王丽芳. 蒲公英和连翘提取物对隐性乳房炎奶牛生产性能、血清抗氧化及免疫指标的影响[J]. 中国畜牧兽医, 2024, 51(4): 1490-1499. |
[15] | 罗春海, 郑程远, 张梦龙, 姚伟佳, 刘佳金, 刘炳琦, 王薇, 付世新. 胎衣不下奶牛miRNA-185靶向调控血管内皮生长因子A表达的研究[J]. 中国畜牧兽医, 2024, 51(3): 916-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||