China Animal Husbandry & Veterinary Medicine ›› 2025, Vol. 52 ›› Issue (6): 2561-2568.doi: 10.16431/j.cnki.1671-7236.2025.06.010
• Nutritionand Feed • Previous Articles
WU Wenhao, LUAN Xinhong, LIN Shumei, GAI Yedan
Received:
2024-10-08
Published:
2025-05-27
CLC Number:
WU Wenhao, LUAN Xinhong, LIN Shumei, GAI Yedan. Research Progress on the Role of Klotho Protein in the Regulation of Calcium and Phosphorus Metabolism in Animals[J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(6): 2561-2568.
[1] 郭益民.生理学[M].北京:高等教育出版社,2023.GUO Y M.Physiology[M].Beijing:Higher Education Press,2023.(in Chinese) [2] 曹授俊.动物生理学[M].北京:中国农业大学出版社,2024.CAO S J.Animal Physiology[M].Beijing:China Agricultural University Press,2024.(in Chinese) [3] WONGDEE K,CHANPAISAENG K,TEERAPORNPUNTAKIT J,et al.Intestinal calcium absorption[J].Comprehensive Physiology,2021,11(3):2047-2073. [4] WILKENS M R,MUSCHER-BANSE A S.Review:Regulation of gastrointestinal and renal transport of calcium and phosphorus in ruminants[J].Animal,2020,14(S1):s29-s43. [5] MARKS J,UNWIN R J.Physiological regulation of phosphate homeostasis[J].Vitamins and Hormones,2022,120:47-78. [6] MATIKAINEN N,PEKKARINEN T,RYHÄNEN E M,et al.Physiology of calcium homeostasis:An overview[J].Endocrinology and Metabolism Clinics of North America,2021,50(4):575-590. [7] MURRAY S L,WOLF M.Calcium and phosphate disorders:Core curriculum 2024[J].American Journal of Kidney Diseases,2024,83(2):241-256. [8] BERNDT T,KUMAR R.Novel mechanisms in the regulation of phosphorus homeostasis[J].Physiology (Bethesda,Md.),2009,24:17-25. [9] KURO-O M,MATSUMURA Y,AIZAWA H,et al.Mutation of the mouse Klotho gene leads to a syndrome resembling ageing[J].Nature,1997,390(6655):45-51. [10] FON TACER K,BOOKOUT A L,DING X,et al.Research resource:Comprehensive expression atlas of the fibroblast growth factor system in adult mouse[J].Molecular Endocrinology,2010,24(10):2050-2064. [11] OISHI H,DOI S,NAKASHIMA A,et al.Klotho overexpression protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways[J].American Journal of Physiology.Renal Physiology,2021,321(6):F799-F811. [12] ZHAO Y,ZENG C Y,LI X H,et al.Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease[J].Aging Cell,2020,19(10):e13239. [13] HU M C,SHIIZAKI K,KURO-O M,et al.Fibroblast growth factor 23 and Klotho:Physiology and pathophysiology of an endocrine network of mineral metabolism[J].Annual Review of Physiology,2013,75:503-533. [14] ITO S,KINOSHITA S,SHIRAISHI N,et al.Molecular cloning and expression analyses of mouse betaklotho,which encodes a novel Klotho family protein[J].Mechanisms of Development,2000,98(1-2):115-119. [15] ITO S,FUJIMORI T,HAYASHIZAKI Y,et al.Identification of a novel mouse membrane-bound family 1 glycosidase-like protein,which carries an atypical active site structure[J].Biochimica et Biophysica Acta,2002,1576(3):341-345. [16] MERONI M,DONGIOVANNI P,TIANO F,et al.β-Klotho as novel therapeutic target in metabolic dysfunction-associated steatotic liver disease (MASLD):A narrative review[J].Biomedicine Pharmacother,2024,180:117608. [17] GENG L,LIAO B,JIN L,et al.β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130[J].Nature Metabolism,2022,4(5):608-626. [18] GENG L,LAM K S L,XU A.The therapeutic potential of FGF21 in metabolic diseases:From bench to clinic[J].Nature Reviews.Endocrinology,2020,16(11):654-667. [19] WANG Y,SUN Z.Current understanding of klotho[J].Ageing Research Reviews,2009,8(1):43-51. [20] CHEN C D,PODVIN S,GILLESPIE E,et al.Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17[J].Proceedingsof the National Academy of Sciences of the United States of America,2007,104(50):19796-19801. [21] BUCHANAN S,COMBET E,STENVINKEL P,et al.Klotho,aging,and the failing kidney[J].Frontiers in Endocrinology,2020,11:560. [22] CUARENTAL L,RIBAGORDA M,CEBALLOS M I,et al.The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury[J].Kidney International,2023,103(4):686-701. [23] CHEN K,WANG S,SUN Q W,et al.Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway[J].Circulation Research,2021,128(4):492-507. [24] KUSABA T,OKIGAKI M,MATUI A,et al.Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(45):19308-19313. [25] IKUSHIMA M,RAKUGI H,ISHIKAWA K,et al.Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells[J].Biochemical and Biophysical Research Communications,2006,339(3):827-832. [26] MINAMIZAKI T,KONISHI Y,SAKURAI K,et al.Soluble Klotho causes hypomineralization in Klotho-deficient mice[J].The Journal of Endocrinology,2018,237(3):285-300. [27] CHEN B,MA X,LIU S,et al.Inhibition of lung cancer cells growth,motility and induction of apoptosis by Klotho,a novel secreted Wnt antagonist,in a dose-dependent manner[J].Cancer Biology & Therapy,2012,13(12):1221-1228. [28] MATSUMOTO M,OGAWA N,FUKUDA T,et al.Protein interaction networks characterizing the A549 cells Klotho transfected are associated with activated pro-apoptotic Bim and suppressed Wnt/β-catenin signaling pathway[J].Scientific Reports,2024,14(1):2130. [29] YAMAMOTO M,CLARK J D,PASTOR J V,et al.Regulation of oxidative stress by the anti-aging hormone Klotho[J].The Journal of Biological Chemistry,2005,280(45):38029-38034. [30] ZENG Y,XU G,FENG C,et al.Klotho inhibits the activation of NLRP3 inflammasome to alleviate lipopolysaccharide-induced inflammatory injury in A549 cells and restore mitochondrial function through SIRT1/Nrf2 signaling pathway[J].The Chinese Journal of Physiology,2023,66(5):335-344. [31] QIU Z,QI B,LI L,et al.Activation of Klotho/Sirt1 signaling pathway attenuates myocardial ischemia reperfusion injury in diabetic rats[J].Shock (Augusta,Ga.),2024,62(3):447-456. [32] WEN Z,LIU X,ZHANG T.L-shaped association of systemic immune-inflammation index (SⅡ) with serum soluble α-Klotho in the prospective cohort study from the NHANES database[J].Scientific Reports,2024,14(1):13189. [33] ROMERO A,DONGIL P,VALENCIA I,et al.Pharmacological blockade of NLRP3 inflammasome/IL-1β-positive loop mitigates endothelial cell senescence and dysfunction[J].Aging and Disease,2022,13(1):284-297. [34] CHEN G,LIU Y,GOETZ R,et al.α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J].Nature,2018,553(7689):461-466. [35] SUZUKI Y,KUZINA E,AN S J,et al.FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(50):31800-31807. [36] XU Y,SUN Z.Molecular basis of Klotho:From gene to function in aging[J].Endocrine Reviews,2015,36(2):174-193. [37] SEGAWA H,YAMANAKA S,OHNO Y,et al.Correlation between hyperphosphatemia and type Ⅱ Na-Pi cotransporter activity in Klotho mice[J].American Journal of Physiology.Renal Physiology,2007,292(2):769-779. [38] DËRMAKU-SOPJANI M,SOPJANI M,SAXENA A,et al.Downregulation of NaPi-Ⅱa and NaPi-Ⅱb Na-coupled phosphate transporters by coexpression of Klotho[J].Cellular Physiology and Biochemistry,2011,28(2):251-258. [39] LIU B H,CHONG F L,YUAN C C,et al.Fucoidan ameliorates renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats by targeting FGF23-Klotho signaling axis[J].Frontiers in Pharmacology,2020,11:586725. [40] HU M C,SHI M,ZHANG J,et al.Klotho:A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule[J].FASEB Journal,2010,24(9):3438-3450. [41] WOLF M T,AN S W,NIE M,et al.Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5(TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms[J].The Journal of Biological Chemistry,2014,289(52):35849-35857. [42] LEE J,JU K D,KIM H J,et al.Soluble α-Klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously[J].American Journal of Physiology.Renal Physiology,2021,320(4):559-568. [43] CHA S K,ORTEGA B,KUROSU H,et al.Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(28):9805-9810. [44] YUAN Q,SATO T,DENSMORE M,et al.Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice[J].PLoS Genetics,2012,8(5):e1002726. [45] YAMASHITA T,NABESHIMA Y,NODA M.High-resolution micro-computed tomography analyses of the abnormal trabecular bone structures in Klotho gene mutant mice[J].The Journal of Endocrinology,2000,164(2):239-245. [46] HUANG T,HE Y,LI Y,et al.The relationship between serum fibroblast growth factor 23 and Klotho protein and low bone mineral density in middle-aged and elderly patients with end-stage renal disease[J].Hormone and Metabolic Research,2024,56(2):142-149. [47] VERLINDEN L,LI S,VELDURTHY V,et al.Relationship of the bone phenotype of the Klotho mutant mouse model of accelerated aging to changes in skeletal architecture that occur with chronological aging[J].Frontiers in Endocrinology,2024,15:1310466. [48] XU F,MA H,LI B,et al.Overexpression of Klotho inhibits differentiation of RAW264.7 cells into osteoclasts[J].Chinese Journal of Cellular and Molecular Immunology,2017,33(6):731-735. [49] SHALHOUB V,WARD S C,SUN B,et al.Fibroblast growth factor 23(FGF23) and alpha-Klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization[J].Calcified Tissue International,2011,89(2):140-150. [50] 杨秋晨,马厚勋,李运奎,等.体外转染Klotho基因对原代成骨细胞活性的影响[J].中国老年学杂志,2015,7:1866-1869.YANG Q C,MA H X,LI Y K,et al.Effect of transfection of Klotho gene on the activity of primary osteoblasts in vitro[J].Chinese Journal of Gerontology,2015,7:1866-1869.(in Chinese) [51] TAKASHI Y,SAWATSUBASHI S,ENDO I,et al.Skeletal FGFR1 signaling is necessary for regulation of serum phosphate level by FGF23 and normal life span[J].Biochemistry and Biophysics Reports,2021,27:101107. [52] KAWAI M,KINOSHITA S,KIMOTO A,et al.FGF23 suppresses chondrocyte proliferation in the presence of soluble α-Klotho both in vitro and in vivo[J].The Journal of Biological Chemistry,2013,288(4):2414-2427. [53] MA L,GAO M,WU L,et al.The suppressive effect of soluble Klotho on fibroblastic growth factor 23 synthesis in UMR-106 osteoblast-like cells[J].Cell Biology International,2018,42(9):1270-1274. [54] 王森.Klotho调控Wnt信号通路减轻糖皮质激素诱导的成骨细胞凋亡[D].重庆:重庆医科大学,2023.WANG S.Klotho regulates the Wnt signaling pathway to reduce glucocorticoid-induced osteoblast apoptosis[D].Chongqing:Chongqing Medical University,2023.(in Chinese) [55] HAUSSLER M R,LIVINGSTON S,SABIR Z L,et al.Vitamin D receptor mediates a myriad of biological actions dependent on its 1,25-dihydroxyvitamin D ligand:Distinct regulatory themes revealed by induction of Klotho and fibroblast growth factor-23[J].JBMR Plus,2021,5(1):e10432. [56] DHAYAT N A,PRUIJM M,PONTE B,et al.Parathyroid hormone and plasma phosphate are predictors of soluble α-Klotho levels in adults of European descent[J].The Journal of Clinical Endocrinology and Metabolism,2020,105(4):e1135-e1143. [57] LEIBROCK C B,VOELKL J,KURO O M,et al.1,25(OH)2D3 dependent overt hyperactivity phenotype in Klotho-hypomorphic mice[J].Scientific Reports,2016,6:24879. [58] YOSHIDA T,FUJIMORI T,NABESHIMA Y.Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous Klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene[J].Endocrinology,2002,143(2):683-689. [59] IMAI M,ISHIKAWA K,MATSUKAWA N,et al.Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression[J].Endocrine,2004,25(3):229-234. [60] SINGH A,VERMA A,SALLIN M A,et al.Noncoding variations in Cyp24a1 gene are associated with Klotho-mediated aging phenotypes in different strains of mice[J].Aging Cell,2019,18(3):e12949. [61] YOSHIKAWA R,YAMAMOTO H,NAKAHASHI O,et al.The age-related changes of dietary phosphate responsiveness in plasma 1,25-dihydroxyvitamin D levels and renal Cyp27b1 and Cyp24a1 gene expression is associated with renal α-Klotho gene expression in mice[J].Journal of Clinical Biochemistry and Nutrition,2018,62(1):68-74. [62] FORSTER R E,JURUTKA P W,HSIEH J C,et al.Vitamin D receptor controls expression of the anti-aging Klotho gene in mouse and human renal cells[J].Biochemical and Biophysical Research Communications,2011,414(3):557-562. [63] POTTS J T.Parathyroid hormone:Past and present[J]. The Journal of Endocrinology,2005,187(3):311-325. [64] BEN-DOV I Z,GALITZER H,LAVI-MOSHAYOFF V,et al.The parathyroid is a target organ for FGF23 in rats[J]. The Journal of Clinical Investigation,2007,117(12):4003-4008. [65] FAN Z,WEI X,ZHU X,et al.Correlation between soluble Klotho and chronic kidney disease-mineral and bone disorder in chronic kidney disease:A Meta-analysis[J].Scientific Reports,2024,14(1):4477. [66] IMURA A,TSUJI Y,MURATA M,et al.Alpha-Klotho as a regulator of calcium homeostasis[J].Science,2007,316(5831):1615-1618. [67] FAN Y,LIU W,BI R,et al.Interrelated role of Klotho and calcium-sensing receptor in parathyroid hormone synthesis and parathyroid hyperplasia[J].Proceedingsof the National Academy of Sciences of the United States of America,2018,115(16):E3749-E3758. [68] IDE N,YE R,COURBEBAISSE M,et al.In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules[J].American Journal of Physiology.Renal Physiology,2018,315(5):F1261-F1270. [69] ZHANG D D,WU Y F,CHEN W X,et al.C-type natriuretic peptide attenuates renal osteodystrophy through inhibition of FGF-23/MAPK signaling[J].Experimental & Molecular Medicine,2019,51(7):1-18. |
[1] | ZHANG Zhengfei, TANG Anxing, SUN Jindong, FU Lixiang, WANG Xingxian, ZHANG Shiyun, YANG Liangyu, NIU Guoyi, TAO Linli. Study on the Appropriate Dietary Crude Protein Level of Yanjin Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(4): 1543-1553. |
[2] | YANG Jinlin, LI Hui, ZHAO Depeng, SHI Yushi, LONG Xia, TAN Qisong. Polymorphisms of EDNRB2 Gene and Its Association with Skin Color Traits in Chishui Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2025, 52(2): 759-770. |
[3] | ZHAO Yutian, CHEN Fuju, YI Pingchang, MA Min, WANG Shouning, QUAN Qishiliu. Exploring Candidate Genes Related to Kidney-adjacent Lipid Deposition in Yak Calves Based on Transcriptome Sequencing [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2727-2738. |
[4] | TU Yunjie, LUAN Deqin, ZHANG Ming, JU Xiaojun, LIU Yifan, SHAN Yanju, JI Gaige, ZOU Jianmin, SHU Jingting, ZHAO Weidong, ZHENG Guoqing. Genotyping of ALDH7A1 and EDNRB2 Genes and Their Association with Skin Blackness in Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(7): 2923-2932. |
[5] | SHI Yanyan, CHEN Jianzhong, WU Peifu, WU Yun, CHEN Fenfen. Development Characteristics of Liver Tissue and Expression of Lipoprotein Lipase Gene in Wuliangshan Black-boned Chicken [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(5): 1988-1997. |
[6] | YANG Chulei, LI Xingyao, ZHANG Yiyuan, TANG Hong, GUO Yanhua, WANG Limin, ZHOU Ping. Research Progress on Bone Morphogenetic Protein Receptor Type-1B Gene in Sheep [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 649-658. |
[7] | ZHAO Depeng, XIAO Tao, LONG Xia, LUO Wei, YE Tao, YU Huan, CHEN Youbo, SHI Yushi, WANG Wenliang, LI Hui. Screening of Candidate Proteins Regulating Egg Green-shell Traits Based on TMT Quantitative Proteomics Technology [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(12): 5138-5149. |
[8] | MAJianqing, SONG Pengyan, YANG Qingfang, KONGJianjun, SONG Zhanfeng, ZHANG Yali, WU Dongwei, XU Zengnian, ZHAO Ning, ZHOU Rongyan, WU Zhanyong. Target Gene Prediction and Bioinformatics Analysis of miR-141 in Capra hircus [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(10): 4211-4221. |
[9] | ZHANG Jiaqi, YANG Kaiqi, ZHANG Jingyi, WANG Xiaoxu, WANG Ye, WANG Rui, YU Hanlin, CHEN Yanqing, BAO Jun, ZHANG Runxiang. Effects of Keel Bone Fracture on Fear Behavior, Production Performance and Egg Quality of Laying Hens in Later Laying Period [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 86-95. |
[10] | LIU Weiqi, ZHANG Yiyang, ZHANG Ziqiang, DING Ke, LIU Yumei. Protective Effect of Resveratrol on Kidney Injury Induced by Aflatoxin B1 in Rabbits [J]. China Animal Husbandry & Veterinary Medicine, 2024, 51(1): 153-159. |
[11] | ZHANG Xinke, ZHU Xuedan, CHEN Yun, ZHANG Shouquan. Research Progress on Bone Mineral Density and Its Relationship with Mammalian Production [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(4): 1422-1433. |
[12] | GOU Danni, WANG Gang, SHEN Xuemei, NIE Liang, HUI Wenjing, GULIPARI Aikebai, YANG Yaling, LIAO Juan, YU Shigang. Polymorphism of LIPE Gene Exon 1 and Its Association with Body Weight and Intramuscular Fat Content in Muchuan Black-bone Chickens [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 4973-4982. |
[13] | WANG Xingping, CAO Jiahui, GOU Dandan, SHAO Yiwen, CHI Shipeng, YANG Chunxue, XU Enshuang. Effect of Epigallocatechin Gallate on Alleviating Acute Kidney Injury Induced by Cisplatin in Rats [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 5186-5193. |
[14] | LIU Jiali, LIN Bing, LIU Xin, YAN Pupu, XIA Jinjin, HUANG Yongxi, BAI Ruonan, GUO Liwei, LIU Guoping. Protective Effect of Poria cocos Polysaccharides on LPS-induced CRFK Cell Inflammation [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(11): 4747-4758. |
[15] | HE Shi, XIAN Weihang, WU Zhongheng, CHEN Shengfeng, RUAN Huimin, YE Cailing, WANG Cuilin, WANG Bingyun. Therapeutic Clinical Effect of Canine UC-MSCs Combined with Trochlear Groove Reconstruction on Patellar Dislocation in Dogs [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(11): 4768-4775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||