China Animal Husbandry and Veterinary Medicine ›› 2025, Vol. 52 ›› Issue (4): 1511-1521.doi: 10.16431/j.cnki.1671-7236.2025.04.006
• Physiological and Biochemical • Previous Articles Next Articles
HE Siqi1,2, CHEN Qian1, ZHANG Hechun3, CHEN Hongyan4, MA Yuehui1, ZHOU Shenghua2, ZHAO Qianjun1
Received:
2024-08-21
Published:
2025-03-29
CLC Number:
HE Siqi, CHEN Qian, ZHANG Hechun, CHEN Hongyan, MA Yuehui, ZHOU Shenghua, ZHAO Qianjun. Research Progress on the Biological Role and Regulatory Mechanism of m6A Methylation in Skeletal Muscle Development[J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(4): 1511-1521.
[1] DOMINISSINI D,MOSHITCH-MOSHKOVITZ S,SCHWARTZ S,et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-Seq[J].Nature,2012,485(7397):201-206. [2] COKER H,WEI G,BROCKDORFF N.m6A modification of non-coding RNA and the control of mammalian gene expression[J].Biochimica et Biophysica Acta Gene Regulatory Mechanisms,2019,1862(3):310-318. [3] WU B,SU S,PATIL D P,et al.Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1[J].Nature Communications,2018,9(1):420. [4] DIAO L T,XIE S J,LEI H,et al.METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels[J].Biochemical and Biophysical Research Communications,2021,552:52-58. [5] HUANG C,DAI R,MENG G,et al.Transcriptome-wide study of mRNAs and lncRNAs modified by m6A RNA methylation in the longissimus dorsi muscle development of cattle-yak[J].Cells,2022,11(22):3654. [6] WANG D,GUAN H,WANG Y,et al.N6-methyladenosine modification in trophoblasts promotes circSETD2 expression,inhibits miR-181a-5p,and elevates MCL1 transcription to reduce apoptosis of trophoblasts[J].Environmental Toxicology,2023,38(2):422-435. [7] LI D,CAI L,MENG R,et al.METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export[J].International Journal of Molecular Sciences,2020,21(5):1660. [8] GONG H,GONG T,LIU Y,et al.Profiling of N6-methyladenosine methylation in porcine longissimus dorsi muscle and unravelling the hub gene ADIPOQ promotes adipogenesis in an m6A-YTHDF1-dependent manner[J].Journal of Animal Science and Biotechnology,2023,14(1):50. [9] 黄芳芳,周诺.METTL3在RNA m6A甲基化修饰的研究进展[J].生理科学进展,2019,50(6):458-463.HUANG F F,ZHOU N.Advances in METTL3-mediated m6A RNA methylation[J].Advances in Physiological Sciences,2019,50(6):458-463.(in Chinese) [10] BOKAR J A,SHAMBAUGH M E,POLAYES D,et al.Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J].RNA,1997,3(11):1233-1247. [11] WANG P,DOXTADER K A,NAM Y.Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J].Molecular Cell,2016,63(2):306-317. [12] 张鑫鑫.m6A在猪胚胎期和出生后骨骼肌发育过程中的调控作用研究[D].北京:中国农业科学院,2020.ZHANG X X.The regulatory role of N6-methyladenosine in the embryonic and postnatal development of skeletal muscle in pig[D].Beijing:Chinese Academy of Agricultural Sciences,2020.(in Chinese) [13] MA H,WANG X,CAI J,et al.N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation[J].Nature Chemical Biology,2019,15(1):88-94. [14] JIA G,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nature Chemical Biology,2011,7(12):885-887. [15] LAMOND A I,SPECTOR D L.Nuclear speckles:A model for nuclear organelles[J].Nature Reviews:Molecular Cell Biology,2003,4(8):605-612. [16] ZHENG G,DAHL J A,NIU Y,et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J].Molecular Cell,2013,49(1):18-29. [17] LIU Y,ZHOU T,WANG Q,et al.m6A demethylase ALKBH5 drives denervation-induced muscle atrophy by targeting HDAC4 to activate FoxO3 signalling[J].Journal of Cachexia Sarcopenia and Muscle,2022,13(2):1210-1223. [18] UEDA Y,OOSHIO I,FUSAMAE Y,et al.AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J].Scientific Reports,2017,7:42271. [19] ROUNDTREE I A,LUO G Z,ZHANG Z,et al.YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J].eLife,2017,6:31311. [20] WANG X,ZHAO B S,ROUNDTREE I A,et al.N6-methyladenosine modulates messenger RNA translation efficiency[J].Cell,2015,161(6):1388-1399. [21] WANG X,LU Z,GOMEZ A,et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature,2014,505(7481):117-120. [22] SHI H,WANG X,LU Z,et al.YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J].Cell Research,2017,27(3):315-328. [23] YING X,HUANG C,LI T,et al.An RNA methylation-sensitive AIEgen-aptamer reporting system for quantitatively evaluating m6A methylase and demethylase activities[J].ACS Chemical Biology,2024, 19(1):162-172. [24] GROSJEAN H,KEITH G,DROOGMANS L.Detection and quantification of modified nucleotides in RNA using thin-layer chromatography[J].Methods in Molecular Biology,2004,265:357-391. [25] MEYER K D,SALETORE Y,ZUMBO P,et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3'-UTRs and near stop codons[J].Cell,2012,149(7):1635-1646. [26] CHEN Y A,OBLIOSCA J M,LIU Y L,et al.NanoCluster beacons enable detection of a single N6-methyladenine[J].Journal of the American Chemical Society,2015,137(33):10476-10479. [27] HONG T,YUAN Y,WANG T,et al.Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification[J].Chemical Science,2017,8(1):200-205. [28] HU L,LIU S,PENG Y,et al.m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome[J].Nature Biotechnology,2022,40(8):1210-1219. [29] YIN R,CHANG J,LI Y,et al.Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function[J].Cell Stem Cell,2022,29(1):149-159.e7. [30] LIU C,SUN H,YI Y,et al.Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI[J].Nature Biotechnology,2023,41(3):355-366. [31] PARK H S,LEE J,LEE H S,et al.Nuclear mRNA export and aging[J].International Journal of Molecular Sciences,2022,23(10):5451. [32] SHI H,WEI J,HE C.Where,when,and how:Context-dependent functions of RNA methylation writers,readers,and erasers[J].Molecular Cell,2019,74(4):640-650. [33] ZHAO B S,ROUNDTREE I A,HE C.Post-transcriptional gene regulation by mRNA modifications[J].Nature Reviews.Molecular Cell Biology,2017,18(1):31-42. [34] CARROLL S M,NARAYAN P,ROTTMAN F M.N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA[J].Molecular and Cellular Biology,1990,10(9):4456-4465. [35] NAYLER O,HARTMANN A M,STAMM S.The ER repeat protein YT521-B localizes to a novel subnuclear compartment[J].Journal of Cell Biology,2000,150(5):949-962. [36] PING X L,SUN B F,WANG L,et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J].Cell Research,2014,24(2):177-189. [37] BARTOSOVIC M,MOLARES H C,GREGOROVA P,et al.N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing[J].Nucleic Acids Research,2017,45(19):11356-11370. [38] ZHAO X,YANG Y,SUN B F,et al.FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J].Cell Research,2014,24(12):1403-1419. [39] XIAO W,ADHIKARI S,DAHAL U,et al.Nuclear m6A reader YTHDC1 regulates mRNA splicing[J].Molecular Cell,2016,61(4):507-519. [40] TAN B,ZHOU K,LIU W,et al.RNA N6-methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer[J].Theranostics,2022,12(13):5727-5743. [41] CHOE J,LIN S,ZHANG W,et al.mRNA circularization by METTL3-eIF3 h enhances translation and promotes oncogenesis[J].Nature,2018,561(7724):556-560. [42] WEI X,HUO Y,PI J,et al.METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis[J].Nature Cell Biology,2022,24(8):1278-1290. [43] SU R,DONG L,LI Y,et al.METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis[J].Nature Cell Biology,2022,24(2):205-216. [44] YU J,CHEN M,HUANG H,et al.Dynamic m6A modification regulates local translation of mRNA in axons[J].Nucleic Acids Research,2018,46(3):1412-1423. [45] ZHOU J,WAN J,SHU X E,et al.N6-methyladenosine guides mRNA alternative translation during integrated stress response[J].Molecular Cell,2018,69(4):636-647e7. [46] LI A,CHEN Y S,PING X L,et al.Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J].Cell Research,2017,27(3):444-447. [47] CHEN F,CHEN Z,GUAN T,et al.N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis[J].Cancer Research,2021,81(11):2847-2860. [48] JIANG Z X,WANG Y N,LI Z Y,et al.The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J].Cell Death&Disease,2021,12(8):744. [49] LI X C,JIN F,WANG B Y,et al.The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA[J].Theranostics,2019,9(13):3853-3865. [50] ZHAO S,CAO J,SUN Y,et al.METTL3 promotes the differentiation of goat skeletal muscle satellite cells by regulating MEF2C mRNA stability in a m6A-dependent manner[J].International Journal of Molecular Sciences,2023,24(18):14115. [51] HUANG C S,ZHU Y Q,XU Q C,et al.YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation[J].Clinical and Translational Medicine,2022,12(6):e848. [52] DENG K,LIU Z,LI X,et al.Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J].International Journal of Biological Macromolecules,2023,254(Pt1):127614. [53] HUANG H,WENG H,SUN W,et al.Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J].Nature Cell Biology,2018,20(3):285-295. [54] BERULAVA T,RAHMANN S,RADEMACHER K,et al.N6-adenosine methylation in miRNAs[J].PLoS One,2015,10(2):e0118438. [55] ALARCON C R,LEE H,GOODARZI H,et al.N6-methyladenosine marks primary microRNAs for processing[J].Nature,2015,519(7544):482-485. [56] MA J Z,YANG F,ZHOU C C,et al.METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J].Hepatology,2017,65(2):529-543. [57] ALARCON C R,GOODARZI H,LEE H,et al.HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J].Cell,2015,162(6):1299-1308. [58] XU Y,YE S,ZHANG N,et al.The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J].Cancer Communications,2020,40(10):484-500. [59] PAN T.N6-methyl-adenosine modification in messenger and long non-coding RNA[J].Trends in Biochemical Sciences,2013,38(4):204-209. [60] XIE S J,TAO S,DIAO L T,et al.Characterization of long non-coding RNAs modified by m6A RNA methylation in skeletal myogenesis[J].Frontiers in Cell and Developmental Biology,2021,9:762669. [61] YANG X,ZHANG S,HE C,et al.METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J].Molecular Cancer,2020,19(1):46. [62] YANG D,QIAO J,WANG G,et al.N6-methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J].Nucleic Acids Research,2018,46(8):3906-3920. [63] YU Z L,ZHU Z M.N6-methyladenosine related long non-coding RNAs and immune cell infiltration in the tumor microenvironment of gastric cancer[J].Biological Procedures Online,2021,23(1):15. [64] DI TIMOTEO G,DATTILO D,CENTRON-BROCO A,et al.Modulation of circRNA metabolism by m6A modification[J].Cell Reports,2020,31(6):107641. [65] WANG W,QIAO S C,WU X B,et al.circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation[J].Cell Death&Disease,2021,12(7):628. [66] BRAUN T,GAUTEL M.Transcriptional mechanisms regulating skeletal muscle differentiation,growth and homeostasis[J].Nature Reviews.Molecular Cell Biology,2011,12(6):349-361. [67] LI J,PEI Y,ZHOU R,et al.Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development[J].International Journal of Biological Sciences,2021,17(7):1682-1692. [68] 杨昕冉.mRNA m6A修饰对秦川肉牛骨骼肌成肌细胞增殖分化的作用机制研究[D].杨凌:西北农林科技大学,2022.YANG X R.The role of mRNA m6A modification in the proliferation and differentiation of Qinchuan beef cattle skeletal myoblast[D].Yangling:Northwest A&F University,2022.(in Chinese) [69] ZOU J,SHEN Y,ZOU J,et al.Transcriptome-wide study revealed that N6-methyladenosine participates in regulation meat production in goats[J].Foods,2023,12(6):1159. [70] DOU Y,WEI Y,ZHANG Z,et al.Transcriptome-wide analysis of RNA m6A methylation regulation of muscle development in Queshan Black pigs[J].BMC Genomics,2023,24(1):239. [71] ZHANG D,WU S,ZHANG X,et al.Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs[J].Journal of Animal Science and Biotechnology,2022,13(1):146. [72] GHELLER B J,BLUM J E,FONG E H H,et al.A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions[J].Cell Death Discovery,2020,6(1):95. [73] YANG X,NING Y,ABBAS RAZA S H,et al.MEF2C expression is regulated by the post-transcriptional activation of the METTL3-m6A-YTHDF1 axis in myoblast differentiation[J].Frontiers in Veterinary Science,2022,9:900924. [74] YANG X,MEI C,MA X,et al.m6A methylases regulate myoblast proliferation,apoptosis and differentiation[J].Animals (Basel),2022,12(6):773. [75] PETROSINO J M,HINGER S A,GOLUBEVA V A,et al.The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice[J].Nature Communications,2022,13(1):168. [76] TAN B,ZENG J,MENG F,et al.Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles[J].BMC Genomics,2022,23(1):804. [77] 杨昕冉,马鑫浩,杜嘉伟,等.m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J].中国农业科学,2023,56(1):165-178.YANG X R,MA X H,DU J W,et al.Expression pattern of m6A methylase-related genes in bovine skeletal muscle myogenesis[J].Scientia Agricultura Sinica,2019,56(1):165-178.(in Chinese) [78] 束婧婷,单艳菊,姬改革,等.广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J].中国农业科学,2022,55(3):589-601.SHU J T,SHAN Y J,JI G G,et al.Relationship between expression levels of Guangxi Partridge chicken m6A methyltransferase genes,myofiber types and myogenic differentiation[J]. Scientia Agricultura Sinica,2019,55(3):589-601.(in Chinese) [79] 庞立川,单艳菊,刘一帆,等.METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J].畜牧兽医学报,2023,54(2):545-553.PANG L C,SHAN Y J,LIU Y F,et al.Expression of METTL16 in different types of chicken muscle and its regulatory role in chicken skeletal muscle function[J].Acta Veterinaria et Zootechnica Sinica,2019,54(2):545-553.(in Chinese) [80] DINA C,MEYRE D,GALLINA S,et al.Variation in FTO contributes to childhood obesity and severe adult obesity[J].Nature Genetics,2007,39(6):724-726. [81] FISCHER J,KOCH L,EMMERLING C,et al.Inactivation of the FTO gene protects from obesity[J].Nature,2009,458(7240):894-898. [82] 任祖凤,顾浩,胡康洪,等.m6A去甲基化酶FTO对猪肌卫星细胞分化的影响[J].中国畜牧兽医,2023,50(7):2777-2788.REN Z F,GU H,HU K H,et al.Effect of m6A demethylase enzyme FTO on differentiation of porcine muscle satellite cells[J].China Animal Husbandry&Veterinary Medicine,2023,50(7):2777-2788.(in Chinese) [83] DENG K,FAN Y,LIANG Y,et al.FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J].Molecular Therapy Nucleic Acids,2021,26:34-48. [84] WANG X,HUANG N,YANG M,et al.FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis[J].Cell Death&Disease,2017,8(3):e2702. [85] WANG Z,JU X,LI K,et al.MeRIP sequencing reveals the regulation of N6-methyladenosine in muscle development between hypertrophic and leaner broilers[J].Poultry Science,2024,103(6):103708. [86] ZHANG X,YAO Y,HAN J,et al.Longitudinal epitranscriptome profiling reveals the crucial role of N6-methyladenosine methylation in porcine prenatal skeletal muscle development[J].Journal of Genetics and Genomics,2020,47(8):466-476. [87] QIAO Y,SUN Q,CHEN X,et al.Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export[J].eLife,2023,12:e82703. [88] DENG K,LIU Z,LI X,et al.Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J].International Journal of Biological Macromolecules,2024,254(Pt1):127614. [89] ZHAO T,ZHAO R,YI X,et al.METTL3 promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2 signaling axis in myoblasts[J].Life Sciences,2022,298:120496. [90] KUDOU K,KOMATSU T,NOGAMI J,et al.The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation[J].Open Biology,2017,7(9):170119. [91] CHEN B,LIU S,ZHANG W,et al.Profiling analysis of N6-methyladenosine mRNA methylation reveals differential m6A patterns during the embryonic skeletal muscle development of ducks[J].Animals (Basel),2022,12(19):2593. [92] KRUGER N,BIWER L A,GOOD M E,et al.Loss of endothelial FTO antagonizes obesity-induced metabolic and vascular dysfunction[J].Circulation Research,2020,126(2):232-242. |
[1] | LI Yajuan, SONG Kelin, LI Jie, ZHANG Yali, LIANG Yuhao, LI Yao, GUN Shuangbao, GAO Xiaoli. Research Progress on the Effects of Cold Stress on Animal Energy Metabolism and Its Molecular Regulation [J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(4): 1616-1626. |
[2] | LI Jingxuan, LIN Yanjiao, HUANG Qiongjun, HAN Xinyan, ZHANG Yuelang. Research Progress on Non-coding RNA Related to Skeletal Muscle Development in Goats [J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(2): 582-592. |
[3] | ZOU Juhong, MO Zhihua, LIU Yufan, ZOU Jianwei, LU Jun, HE Haien, WANG Fan, HUANG Yanna, JIANG Qinyang. Cloning,Bioinformatics Analysis and Eukaryotic Expression Vector Construction of Rheb Gene in Nubian Goats [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(5): 1819-1826. |
[4] | LI Ying, GUO Xu, JIANG Qicheng, GU Lihong. Study on the Co-regulation of m6A and miRNA on Skeletal Muscle Development of Peking Ducks in Embryonic Stage [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 470-481. |
[5] | QIN Tianmiao, FANG Xiaohuan, LI Junjie. Research Status on the Mechanism of SIRT2 Regulating Autophagy [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 513-520. |
[6] | MA Sufang, YANG Wenqing, ZHANG Bingbing, GUO Ruonan, XU Yingxin, ZHANG Linlin, GUO Yiwen, HU Debao, GUO Hong, DING Xiangbin, LI Xin. Joint Analysis of Transcriptome and Translatome During the Development of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(11): 4665-4677. |
[7] | LIU Ling, WANG Shengnan, WANG Dandan, MA Yuehui, JIANG Lin, CUI Kai. Effect and Molecular Mechanism of Zbed6 Gene Knockout on the Growth and Development of Skeletal Muscle in Mice [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3641-3651. |
[8] | LI Hanmei, YAN Hua, LIU Xin, WANG Lixian. Research Progress on Maternal Behavior in Sows and Its Influencing Factors [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3171-3179. |
[9] | YANG Guitao, MA Jideng, LI Xuewei, GE Liangpeng, ZHANG Jinwei. Research Advance on Regulation of Skeletal Muscle Physiology Function by Short Chain Fatty Acids [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2286-2295. |
[10] | WU Zhijuan, CHAI Zhixin, WANG Jikun, WANG Jiabo, ZHONG Jincheng, XIN Jinwei. Expression Analysis of Specific Matrix Metalloproteinases and Functionally Related Genes of Skeletal Muscles in Yak [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1774-1784. |
[11] | ZHEN Zhen, WANG Mei, WANG Yimin, HU Debao, ZHANG Linlin, LI Xin, GUO Yiwen, GUO Hong, DING Xiangbin. Effect of RNA Methylation Transfer Enzyme METTL3 on the Proliferation and Myogenic Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 1025-1036. |
[12] | TAN Haoyun, LIU Qian, HU Debao, ZHANG Linlin, LI Xin, DING Xiangbin, GUO Hong, GUO Yiwen. Effects of Interference lnc721 on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3292-3300. |
[13] | YANG Lili, ZHANG Qiongwen, ZHANG Yu, LIU Xiaoxiao, CHEN Ting, JIANG Mingsheng. Effect of miR-495-3p on Proliferation and Differentiation of Goat Skeletal Muscle Cells [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(4): 1271-1279. |
[14] | SHI Yuanjun, MI Siyuan, YU Ying. Research Progress on m6A Epigenetic Modification and Its Regulation Mechanism [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(1): 197-207. |
[15] | SHI Hongmei, HE Yang, DU Yanli, LIU Yong, DOU Tengfei, WANG Kun, JIA Junjing, GE Changrong. An Overview of Skeletal Muscle Fiber Characteristics and Developmental Mechanism of Livestock and Poultry [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(9): 3191-3199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||