China Animal Husbandry and Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (3): 1132-1141.doi: 10.16431/j.cnki.1671-7236.2024.03.025
• Genetics and Breeding • Previous Articles
CHEN Bohe1, LIUFU Sui1, YU Zonggang1, WANG Kaiming1, LIU Xiaolin1, YI Lei1, MA Haiming1,2,3
Received:
2023-08-30
Published:
2024-02-27
CLC Number:
CHEN Bohe, LIUFU Sui, YU Zonggang, WANG Kaiming, LIU Xiaolin, YI Lei, MA Haiming. Research Progress on the Regulation of Non-coding RNA in Muscle Fiber-type Conversion in Animals[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 1132-1141.
[1] 欧秀琼,李星,钟正泽,等.猪肌肉肌纤维特性与肌肉品质的关系及品种、性别差异[J].新疆农业科学, 2019, 56(12):2345-2352. OU X Q, LI X, ZHONG Z Z, et al.Relationship of muscle fiber characteristics with meat quality and its breed and sex differences in pigs[J].Xinjiang Agricultural Sciences, 2019, 56(12):2345-2352.(in Chinese) [2] 陈映,葛桂华,徐旭,等.品种和肌纤维类型对猪肉质性状的影响[J].中国畜牧杂志, 2020, 56(11):52-55. CHEN Y, GE G H, XU X, et al.Effect of different muscle fiber types on meat quality in pigs[J].Chinese Journal of Animal Science, 2020, 56(11):52-55.(in Chinese) [3] KELLIS M, FELDSER D, CASSADY J P, et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J].Nature, 2009, 458(7235):223-227. [4] ABO E A, ALI Y, BASSYOUNI I H, et al.Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients:Correlation with disease activity[J].Clinical and Experimental Medicine, 2019, 19(1):47-53. [5] PAOLETTI A, ROHMER J, LY B, et al.Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to miR-155 and are differentially modulated by different TNF inhibitors[J].Journal of Immunology, 2019, 203(7):1766-1775. [6] YAN H, BU P.Non-coding RNA in cancer[J]. Essays in Biochemistry, 2021, 65(4):625-639. [7] 徐妲,陈璇,罗晓彤,等.snRNA在哺乳动物中基因表达研究进展[J].中国畜牧杂志, 2020, 56(1):39-44. XU D, CHEN X, LUO X T, et al.Research progress on gene expression of small nuclear RNA in mammals[J].Chinese Journal of Animal Science, 2020, 56(1):39-44.(in Chinese) [8] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al.An overview of microRNAs:Biology, functions, therapeutics, and analysis methods[J].Journal of Cellular Physiology, 2019, 234(5):5451-5465. [9] KILIKEVICIUS A, MEISTER G, COREY D R.Reexamining assumptions about miRNA-guided gene silencing[J].Nucleic Acids Research, 2022, 50(2):617-634. [10] TIWARI A, MUKHERJEE B, DIXIT M.microRNA key to angiogenesis regulation:miRNA biology and therapy[J].Current Cancer Drug Targets, 2018, 18(3):266-277. [11] LI Y, YANG M, LOU A, et al.Integrated analysis of expression profiles with meat quality traits in cattle[J].Scientific Reports, 2022, 12(1):5926. [12] YIN L, SHEN X, YIN D, et al.Characteristics of the microRNA expression profile of exosomes released by Vero cells infected with porcine epidemic diarrhea virus[J].Viruses, 2022, 14(4):806. [13] HILL M, TRAN N.miRNA interplay:Mechanisms and consequences in cancer[J].Disease Models&Mechanisms, 2021, 14(4):dmm047662. [14] WU M, YUAN Y, HUANG B, et al.Identification of a TGF-β/SMAD/lnc-UTGF positive feedback loop and its role in hepatoma metastasis[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):441. [15] BROOKE M H, KAISER K K.Three "myosin adenosine triphosphatase" systems:The nature of their pH lability and sulfhydryl dependence[J].Journal of Histochemistry & Cytochemistry, 1970, 18(9):670-672. [16] BROOKE M H, KAISER K K.Muscle fiber types:How many and what kind?[J].Archives of Neurology, 1970, 23(4):369-379. [17] YANNA H, QIN X, YUEYUE C, et al.Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs[J]. Journal of Functional Foods, 2020, 73(2020):104090. [18] MEDLER S.Mixing it up:The biological significance of hybrid skeletal muscle fibers[J].Journal of Experimental Biology, 2019, 222(23):jeb200832. [19] RONNBLOM A, THORNELL L E, SHAH F, et al.Unique fiber phenotype composition and metabolic properties of the stapedius and tensor tympani muscles in the human middle ear[J].Journal of Anatomy, 2023, 243(1):39-50. [20] LARSON L, LIOY J, JOHNSON J, et al.Transitional hybrid skeletal muscle fibers in rat soleus development[J]. Journal of Histochemistry&Cytochemistry, 2019, 67(12):891-900. [21] SCHIAFFINO S.Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies[J].FEBS Journal, 2018, 285(20):3688-3694. [22] UNSIHUAY D, HU H, QIU J, et al.Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types[J]. Chemical Science, 2023, 14(15):4070-4082. [23] AGARWAL M, SHARMA A, KUMAR P, et al.Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development[J].Development (Cambridge, England), 2020, 147(7):dev184507. [24] CHEN P, XU D Q, XU S L, et al.Blebbistatin modulates prostatic cell growth and contrapctility through myosin Ⅱ signaling[J].Clinical Science (London, England), 2018, 132(20):2189-2205. [25] SHEN L, CHEN L, ZHANG S, et al.MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality[J].Meat Science, 2016, 116:201-206. [26] CHEMELLO F, GRESPI F, ZULIAN A, et al.Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle[J].Cell Reports (Cambridge), 2019, 26(13):3784-3797. [27] LIU Y, ZHANG M, SHAN Y, et al.miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome[J].Scientific Reports, 2020, 10(1):10619. [28] XU M, CHEN X, CHEN D, et al.microRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis[J].Life Sciences, 2018, 215:236-245. [29] ZHANG S, CHEN X, HUANG Z, et al.Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a[J].British Journal of Nutrition, 2019, 121(1):1-8. [30] D'SOUZA R F, ZENG N, MARKWORTH J F, et al.Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men[J].American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2018, 314(6):R824-R833. [31] HAGIWARA N, YEH M, LIU A.Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice[J].Developmental Dynamics, 2007, 236(8):2062-2076. [32] HONDA M, HIDAKA K, FUKADA S, et al.Vestigial-like 2 contributes to normal muscle fiber type distribution in mice[J].Scientific Reports, 2017, 7(1):7112-7168. [33] QUIAT D, VOELKER K A, PEI J, et al.Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10196-10201. [34] VAN ROOIJ E, QUIAT D, JOHNSON B A, et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J].Developmental Cell, 2009, 17(5):662-673. [35] YANG K, WANG L, ZHOU G, et al.Phytol promotes the formation of slow-twitch muscle fibers through PGC-1α/miRNA but not mitochondria oxidation[J].Journal of Agricultural and Food Chemistry, 2017, 65(29):5916-5925. [36] IWASAKI H, ICHIHARA Y, MORINO K, et al.microRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells[J].Scientific Reports, 2021, 11(1):1161. [37] BJORKMAN K K, GUESS M G, HARRISON B C, et al.miR-206 enforces a slow muscle phenotype[J].Journal of Cell Science, 2020, 133(15):jcs243162. [38] DA PAIXÃO A O, BOLIN A P, SILVESTRE J G, et al.Palmitic acid impairs myogenesis and alters temporal expression of miR-133a and miR-206 in C2C12 myoblasts[J].International Journal of Molecular Sciences, 2021, 22(5):2748. [39] ZHANG D, WANG X, LI Y, et al.Thyroid hormone regulates muscle fiber type conversion via miR-133a1[J].Journal of Cell Biology, 2014, 207(6):753-766. [40] GAN M, SHEN L, LIU L, et al.miR-222 is involved in the regulation of genistein on skeletal muscle fiber type[J].Journal of Nutritional Biochemistry, 2020, 80:108320. [41] ZHANG Y, YANG M, ZHOU P, et al.Beta-hydroxy-beta-methylbutyrate-Induced upregulation of miR-199a-3p contributes to slow-to-fast muscle fiber type conversion in mice and C2C12 cells[J].Journal of Agricultural and Food Chemistry, 2020, 68(2):530-540. [42] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1alpha pathway[J].Journal of Nutritional Biochemistry, 2020, 77:108297. [43] WEN W, CHEN X, HUANG Z, et al.miR-22-3p regulates muscle fiber-type conversion through inhibiting AMPK/SIRT1/PGC-1α pathway[J].Animal Biotechnology, 2021, 32(2):254-261. [44] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type gene expression through AMPK signaling pathway and miR-22-3p in porcine myotubes[J].Animal Biotechnology, 2022, 33(3):579-585. [45] XU M, CHEN X, HUANG Z, et al.microRNA-139-5p suppresses myosin heavy chain Ⅰ and Ⅱa expression via inhibition of the calcineurin/NFAT signaling pathway[J].Biochemical and Biophysical Research Communications, 2018, 500(4):930-936. [46] DU J, ZHANG P, ZHAO X, et al.microRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg[J].The FASEB Journal, 2018, 33(2):1911-1926. [47] BRIDGES M C, DAULAGALA A C, KOURTIDIS A.LNCcation:lncRNA localization and function[J].Journal of Cell Biology, 2021, 220(2):e202009045. [48] WOHLWEND M, LAURILA P P, WILLIAMS K, et al.The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging[J].Science Translational Medicine, 2021, 13(623):c7367. [49] DOU M, YAO Y, MA L, et al.The long noncoding RNA MyHC ⅡA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J].The Journal of Biological Chemistry, 2020, 295(15):4937-4949. [50] HE Z Z, ZHAO T, QIMUGE N, et al.COPS3 AS lncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype[J].Cell Signal, 2022, 95:110341. [51] MA M, CAI B, JIANG L, et al.lncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis[J].Cells (Basel, Switzerland), 2018, 7(12):243. [52] YU J, WANG Z, YANG X, et al.lncRNA-FKBP1C regulates muscle fiber type switching by affecting the stability of MYH1B[J]. Cell Death Discovery, 2021, 7(1):73. [53] JU X, LIU Y, SHAN Y, et al.Analysis of potential regulatory lncRNAs and circRNAs in the oxidative myofiber and glycolytic myofiber of chickens[J].Scientific Reports, 2021, 11(1):20861. [54] WANG S, TAN B, XIAO L, et al.Comprehensive analysis of long noncoding RNA modified by m6A methylation in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2022, 23(9):4600. [55] WANG J, ZHU S, MENG N, et al.ncRNA-encoded peptides or proteins and cancer[J].Molecular Therapy, 2019, 27(10):1718-1725. [56] CAO H, LIU J, DU T, et al.Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J].Molecular Genetics and Genomics, 2022, 297(1):87-99. [57] LI B, YIN D, LI P, et al.Profiling and functional analysis of circular RNAs in porcine fast and slow muscles[J].Frontiers in Cell and Developmental Biology, 2020, 8:322. [58] SHEN L, GAN M, TANG Q, et al.Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic dpecialization in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2019, 20(12):2855. [59] GAUTHIER B R, COBO-VUILLEUMIER N, LÓPEZ-NORIEGA L.Roles of extracellular vesicles associated non-coding RNAs in diabetes mellitus[J].Frontiers in Endocrinology, 2022, 13:1057407. [60] WAN X, LIAO J, LAI H, et al.Roles of microRNA-192 in diabetic nephropathy:The clinical applications and mechanisms of action[J].Frontiers in Endocrinology (Lausanne), 2023, 14:1179161. |
[1] | LUO Chunhai, ZHENG Chengyuan, ZHANG Menglong, YAO Weijia, LIU Jiajin, LIU Bingqi, WANG Wei, FU Shixin. Regulation of Vascular Endothelial Growth Factor A Expression by miRNA-185 in Dairy Cows with Retained Fetal Membranes [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 916-925. |
[2] | YANG Yuming, ZHAO Xinming, TAN Baohua, XIAO Liyao, LU Geyan, ZHAI Lijun, HUANG Yiyang, HONG Linjun, GU Ting. Effect of Long Non-coding RNA MSTRG.14200 on Porcine Skeletal Muscle Satellite Cell Differentiation and Muscle Fiber Transformation [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 453-461. |
[3] | LI Ying, GUO Xu, JIANG Qicheng, GU Lihong. Study on the Co-regulation of m6A and miRNA on Skeletal Muscle Development of Peking Ducks in Embryonic Stage [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 470-481. |
[4] | LI Hongyi, YANG Xuefen, LIN Zesen, WU Xiaofei, LYU Qixin, YU Jiali, ZHANG Mao. Effect of Lactobacillus reuteri Replacing Antibiotics on the Expression of Intestinal miRNA in Piglets [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 74-85. |
[5] | CHEN Yu, LIU Junyang, MU Qing, LU Zeyu, LI Yunhua, LIU Jiasen, WU Zixian, WANG Haoyuan, SUN Yiwen, ZHAO Yanhong. Research Progress on the Regulation of Economic Traits Related to Bovine Ruminants by Long-chain Non-coding RNA [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 203-211. |
[6] | ZHANG Xinyu, WANG Dan, YANG Xia, FU Jiaqi, CAO Yang, ZHANG Lichun, SUN Fuliang. Differentially Expressed miRNAs Screening and Regulatory Network Analysis of Xinji Fine Wool Sheep and Small-tailed Han Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3480-3489. |
[7] | ZHU Kaiqing, ZHU Yue, LIU Yingying, CUI Yanan, JIANG Bingyu, LI Yan. Screening of Differentially Expressed cricRNA of Porcine Small Intestinal Epithelial Cells at Early ETEC infection [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3490-3498. |
[8] | XU Enshuang, YANG Chunxue, SUN Yue, TIAN Xue, ZHENG Jiasan, LIU Yun. Screening and Analysis of circRNAs Differentially Expressed in Tamoxifen-resistant Canine Mammary Gland Tumor Cells [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3413-3420. |
[9] | LI Jie, CHEN Chuwen, ZHAO Ruipeng, LIU Yuan, LI Zhixiong. Research Progress on Long Non-coding RNA of Muscle Development in Livestock and Poultry [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2427-2438. |
[10] | WANG Yunlu, MENG Zhaoyi, YAO Yilong, GUO Min, NIU Jiaqaing, SUOLANG Sizhu, XU Yefen. Screening and Targeting Verification of lncRNA of "Sponge Adsorption" bta-miR-146a in Yak [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 859-869. |
[11] | REN Qiaoling, ZHANG Jiaqing, WANG Jing, CHEN Junfeng, MA Qiang, GAO Binwen, LIU Fujiu, XING Baosong. Comparison and Analysis of miRNA Expression Profile in the Hypothalamic-pituitary Axis of Anestrous and Estrous Primiparous Sows [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(11): 4491-4503. |
[12] | YANG Yaling, SHEN Xuemei, YU Shigang, WANG Gang, GULIPARI Aikebai, LIU Wujun. Identification and Tissue Expression of Circular RNA circWWP1 in Chicken [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(10): 3917-3927. |
[13] | HE Yue, CHEN Mengdi, BAI Jinhui, SONG Jixuan, XIA Guangjun. Research Progress on the Regulation of miRNA from Adipose-derived Exosomes on Lipid Metabolism [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(10): 3950-3958. |
[14] | CHEN Yanxi, WANG Chen, LUO Yuan, ZHOU Yuancheng, XU Zhiwen, PENG Yuanyi, SONG Zhenhui, LIU Xiao. circRNA Expression Profile Analysis of PK-15 Cells Response to Seneca Virus A Infection [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(1): 280-289. |
[15] | GAO Xiaomin, ZHOU Shujian, CHEN Chen, JIN Jing, HU Cai, ZHANG Chen, ZUO Qisheng, ZHANG Yani, CHEN Guohong, LI Bichun. Regulation of STAT1 and Histone Acetylation Modification on lncRNA-BMP4 Transcription in Chickens [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3321-3332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||