China Animal Husbandry and Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (6): 2270-2278.doi: 10.16431/j.cnki.1671-7236.2022.06.027
• Genetics and Breeding • Previous Articles Next Articles
SHAO Yandi1, JIANG Qiufei2, FENG Yuan2, WANG Yu2, ZHANG Juan1, ZHOU Zihang1, WANG Weizhen1, YU Baojun1, FENG Xiaofang1, CHEN Yafei1, GU Yaling1
Received:
2022-02-08
Online:
2022-06-05
Published:
2022-05-27
CLC Number:
SHAO Yandi, JIANG Qiufei, FENG Yuan, WANG Yu, ZHANG Juan, ZHOU Zihang, WANG Weizhen, YU Baojun, FENG Xiaofang, CHEN Yafei, GU Yaling. Research Progress on Candidate Genes of Cattle Reproductive Traits[J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2270-2278.
[1] 梁春年, 阎萍, 郭宪, 等.牛繁殖性状候选基因的研究进展[J].中国畜牧兽医, 2011, 38(8):103-106. LIANG C N, YAN P, GUO X.et al.Recent progress of propagation traits candidate genes in cattle[J].China Animal Husbandry & Veterinary Medicine, 2011, 38(8):103-106.(in Chinese) [2] EALY A D, WOOLDRIDGE L K, MCCOSKI S R.Board invited review:Post-transfer consequences of in vitro-produced embryos in cattle[J].Journal of Animal Science, 2019, 97(6):2555-2568. [3] BHAKAT M, MOHANTY T, KRAINA V S, et al.Effect of age and season on semen quality parameters in Sahiwal bulls[J].Tropical Animal Health and Production, 2011, 43(6):1161-1168. [4] MENON K M, MUNSHI U M, CLOUSER C L, et al.Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression:A perspective[J].Biology of Reproduction, 2004, 70(4):861-866. [5] 马富龙, 褚敏, 常永芳, 等.LHR、PRLR基因在不同发育阶段牦牛睾丸中的表达与定位[J].农业生物技术学报, 2020, 28(4):672-680. MA F L, CHU M, CHANG Y F, et al.Expression and localization of LHR and PHLR genes in testicles of yark (Bos grunniens) at different developmental stages[J].Chinese Journal of Agricultural Biotechnology, 2020, 28(4):672-680.(in Chinese) [6] 杜青之.GnRH、LHR和PRL基因多态性及其与荷斯坦牛精液品质的关联研究[D].武汉:华中农业大学, 2011. DU Q Z.Study on genetic polymorphism of GnRH, LHR and PRL genes and their relationship with semen quality in Chinese Holstein bulls[D].Wuhan:Huazhong Agricultural University, 2011.(in Chinese) [7] 孙丽萍, 杜青之, 宋亚攀, 等.GnRH和LHR基因多态性和牛精液品质性状的相关分析[J].中国奶牛, 2011, 22:5-8. SUN L P, DU Q Z, SONG Y P, et al.Polymorphisms in GnRH and LHR genes and their effects on bulls sperm quality traits[J].China Dairy Cattle, 2011, 22:5-8.(in Chinese) [8] SUN L P, DU Q Z, SONG Y P, et al.Polymorphisms in luteinizing hormone receptor and hypothalamic gonadotropin-releasing hormone genes and their effects on sperm quality traits in Chinese Holstein bulls[J].Molecular Biology Reports, 2012, 39(6):7117-7123. [9] SIRONEN A, KOTAJA N, MULHERN H, et al.Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia[J].Biology of Reproduction, 2011, 85(4):690-701. [10] 郭芳, 罗国静, 鞠志花, 等.SPEF2基因可变剪切体和功能性SNP鉴定及其与公牛精液性状的相关性研究[J].南京农业大学学报, 2014, 37(3):119-125. GUO F, LUO G J, JU Z H, et al.Association of SPEF2 gene splices variant and functional SNP with semen quality traits in Chinese Holstein bulls[J].Journal of Nanjing Agricultural University, 2014, 37(3):119-125.(in Chinese) [11] GUO F, YANG B, JU Z H, et al.Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls[J].Reproduction, 2014, 147(2):241-252. [12] SWEETT H, FONSECA PAS, SUAREZ-VEGA A, et al.Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle[J].Scitific Reports, 2020, 10(1):20102. [13] EPIFANO O, DEAN J.Genetic control of early folliculogenesis in mice[J].Trends in Endocrinology and Metabolism, 2002, 13(4):169-173. [14] 曹静, 陈耀星, 王子旭, 等.促性腺激素释放激素的研究进展[J].中国畜牧兽医, 2007, 5:48-51. CAO J, CHEN Y X, WANG Z X, et al.Progress on gonadotropin-releasing hormone[J].China Animal Husbandry & Veterinary Medicine, 2007, 5:48-51.(in Chinese) [15] DURLINGER A L, KRAMER P, KARELS B, et al.Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary[J].Endocrinology, 1999, 140(12):5789-5796. [16] LIU M N, ZHANG K, XU T M.The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency[J].Human Fertility, 2021, 24(5):325-332. [17] DUBE J L, WANG P, ELVIN J, et al.The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes[J].Molecular Endocrinology, 1998, 12(12):1809-1817. [18] MCGRATH S A, ESQUELA A F, LEE S J.Oocyte-specific expression of growth/differentiation factor-9[J].Molecular Endocrinology, 1995, 9(1):131-136. [19] 丰培金, 牛淑玲, 周虚.卵泡刺激素受体研究进展[J].生殖医学杂志, 2003, 5:311-316. FENG P J, NIU S L, ZHOU X.Advances on the follicle-stimulating hormone receptor[J].Journal of Reproductive Medicine, 2003, 5:311-316.(in Chinese) [20] CICCONE N A, KAISER U B.The biology of gonadotroph regulation[J].Current Opinion in Endocrinology, Diabetes and Obesity, 2009, 16(4):321-327. [21] GHARIB S D, WIERMAN M E, SHUPNIK M A, et al.Molecular biology of the pituitary gonadotropins[J].Endocrine Reviews, 1990, 11(1):177-199. [22] CHU L, LI J, LIU Y, et al.Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction[J].Molecular Endocrinology, 2014, 28(11):1785-1795. [23] DA S J, FERREIRA R M, MATURANA F M, et al.Use of FSH in two different regimens for ovarian superstimulation prior to ovum pick up and in vitro embryo production in Holstein cows[J].Theriogenology, 2017, 90:65-73. [24] ZHANG H, YANG Y, MA W, et al.The revascularization and follicular survival of mouse ovarian grafts treated with FSH during cryopreservation by vitrification[J].CryoLetters, 2016, 37(2):88-102. [25] XIAO X, ZI X D, NIU H R, et al.Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes[J].Reproductive Biology and Endocrinology, 2014, 12:30. [26] 朱芳贤, 赵俊金, 陆灵勇, 等.FSH剂量及应激对文山牛超数排卵效果的影响[J].中国畜牧业, 2020, 20:43-44. ZHU F X, ZHAO J J, LU L Y, et al.Effects of FSH and dosage and stress on superovulation in Wenshan cattle[J].China Animal Industry, 2020, 20:43-44.(in Chinese) [27] BEHRENDT D, BURGER D, GREMMES S, et al.Active immunisation against GnRH as treatment for unilateral granulosa theca cell tumour in mares[J].Equine Veterinary Journal, 2021, 53(4):740-745. [28] LIU T C, CHIANG C F, HO C T, et al.Effect of GnRH on ovulatory response after luteolysis induced by two low doses of PGF2α in lactating dairy cows[J].Theriogenology, 2018, 105:45-50. [29] LIU T C, HO C T, LI K P, et al.Human chorionic gonadotropin (hCG)-induced ovulation occurs later but with equal occurrence in lactating dairy cows:Comparing hCG and gonadotropin-releasing hormone protocols[J].The Journal of Reproduction and Development, 2019, 5(6):507-514. [30] BITTAR J H, PINEDO P J, RISCO C A, et al.Inducing ovulation early postpartum influences uterine health and fertility in dairy cows[J].Journal of Dairy Science, 2014, 97(6):3558-3569. [31] RIBEIRO E S, BISINOTTO R S, LIMA F S, et al.Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility[J].Journal of Dairy Science, 2014, 97(11):6888-6900. [32] DURLINGER A L, KRAMER P, KARELS B, et al.Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary[J].Endocrinology, 1999, 140(12):5789-5796. [33] WEENEN C, LAVEN J S, VON BERGH A R, et al.Anti-Müllerian hormone expression pattern in the human ovary:Potential implications for initial and cyclic follicle recruitment[J].Molecular Human Reproduction, 2004, 10(2):77-83. [34] 李树静, 冯春涛, 胡智辉, 等.供体牛外周血AMH浓度对荷斯坦青年奶牛体内胚胎生产效率的影响[J].畜牧兽医学报, 2021, 52(6):1594-1602. LI S J, FENG C T, HU Z H, et al.The effect of peripheral blood AMH concentration on superovulation and embryo production performance of Holstein young dairy cattle[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(6):1594-1602.(in Chinese) [35] NAWAZ M Y, JIMENEZ-KRASSEL F, STEIBEL J P, et al.Genomic heritability and genome-wide association analysis of anti-Müllerian hormone in Holstein dairy heifers[J].Journal of Dairy Science, 2018, 101(9):8063-8075. [36] LA MARCA A, SIGHINOLFI G, RADI D, et al.Anti-Müllerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART)[J].Human Reproduction Update, 2010, 16(2):113-130. [37] UMER S, ZHAO S J, SAMMAD A, et al.AMH:Could it be used as a biomarker for fertility and superovulation in domestic animals?[J].Genes, 2019, 10(12):1009. [38] CHEN H, LIU C, JIANG H, et al.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J].Cellular Physiology and Biochemistry, 2017, 41(2):439-450. [39] BELLI M, SHIMASAKI S.Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function[J].Vitamins Hormones, 2018, 107:317-348. [40] HEATH D A, PITMAN J L, MCNATTY K P.Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors[J].Reproduction, 2017, 154(4):521-534. [41] ALAM M H, LEE J, MIYANO T.GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes[J].The Journal of Reproduction and Development, 2018, 64(5):423-431. [42] 付瑶.BMP15/GDF9通过BMPR2调控牛卵丘细胞增殖与凋亡机制的研究[D].长春:吉林大学, 2018. FU Y.BMP15/GDF9 regulates proliferation and apoptosis of bovine cumulus cells by BMPR2[D].Changchun:Jilin University, 2018.(in Chinese) [43] 王峰, 刘永斌, 田春英, 等.骨形态发生蛋白基因mRNA在牛卵巢组织中的表达研究[J].中国畜牧杂志, 2008, 9:1-5. WANG F, LIU Y B, TIAN C Y, et al.Expression of bone morphogenetic protein gene mRNA in bovine ovarian tissue[J].Chinese Journal of Animal Science, 2008, 9:1-5.(in Chinese) [44] 刘畅.BMP15和GDF9通过miRNA-375-BMPR2调控牛卵丘细胞增殖与凋亡的研究[D].长春:吉林大学, 2018. LIU C.Effects of BMP15 and GDF9 through miRNA-375-BMPR2 pathway on bovine cumulus cells proliferation and apoptosis[D].Changchun:Jilin University, 2018.(in Chinese) [45] 晁哲, 邢漫萍, 黄丽丽, 等.海南黑山羊GDF9和BMP15基因多态性与初胎产羔数间的关系[J].畜牧与兽医, 2021, 53(11):14-20. CHAO Z, XING M P, HUANG L L, et al.Correlation between genetic polymorphisms of the GDF9 and BMP15 genes and the litter size of the first parity of Hainan Black goats[J].Animal Husbandry & Veterinary Medicine, 2021, 53(11):14-20.(in Chinese) [46] 孙庆, 田志龙, 刘秋月, 等.鲁中肉羊BMPR1B、BMP15和GDF9基因多态性与产羔数关联分析[J].中国草食动物科学, 2019, 39(4):1-5. SUN Q, TIAN Z L, LIU Q Y, et al.Polymorphisms of BMPR1B, BMP15 and GDF9 genes and their association with litter size in Luzhong mutton sheep[J].China Herbivore Science, 2019, 39(4):1-5.(in Chinese) [47] SANCHEZ J M, MATHEW D J, PASSARO C, et al.Embryonic maternal interaction in cattle and its relationship with fertility[J].Reproduction in Domestic Animals, 2018, 53(2):20-27. [48] 韩国波.SIRT5对小鼠卵母细胞成熟及早期胚胎发育的影响[D].延吉:延边大学, 2021. HAN G B.Effect of SIRT5 on oocytes maturation and early embryo development in mice[D].Yanji:Yanbian University, 2021.(in Chinese) [49] ETTEGOWDA A, YAO J, SEN A, et al.JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(45):17602-17607. [50] LEE K B, WEE G, ZHANG K, et al.Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development[J].Biology of Reproduction, 2014, 90(3):69. [51] DE CAMARGO G M, COSTA R B, DE ALBUQUERQUE L G, et al.Association between JY-1 gene polymorphisms and reproductive traits in beef cattle[J].Gene, 2014, 533(2):477-480. [52] DE CAMARGO G M, BALDI F, REGITANO L C, et al.Characterization of the exonic regions of the JY-1 gene in Zebu cattle and buffaloes[J].Reproduction in Domestic Animals, 2013, 48(6):918-922. [53] 蒋明.MCRS1、CDX2和NANOG在体外受精和核移植牛囊胚内细胞团及滋养层细胞中的表达[D].杨凌:西北农林科技大学, 2019. JIANG M.Expression of MCRS1, CDX2, NANOG in endothelial cells and trophoblast cells of bovine blastocyst after in vitro fertilization and nuclear transfer[D].Yangling:Northwest A&F University, 2019.(in Chinese) [54] JEDRUSIK A, COX A, WICHER KB, et al.Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition[J].Developmental Biology, 2015, 398(2):147-52. [55] 刘欣.cdx2基因对牛早期胚胎发育及相关基因表达的影响[D].呼和浩特:内蒙古大学, 2013. LIU X.Effect of cdx2 on bovine pre-implantation embryonic development and lineage genes expression[D].Hohhot:Inner Mongolia University, 2013.(in Chinese) [56] SCHIFFMACHER A T, KEEFER C L.CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells[J].Molecular Reproduction and Development.2013, 80(10):826-839. [57] SAKURAI N, TAKAHASHI K, EMURA N, et al.The necessity of OCT-4 and CDX2 for early development and gene expression involved in differentiation of inner cell mass and trophectoderm lineages in bovine embryos[J].Cellular Reprogramming, 2016, 18(5):309-318. [58] YAN X, BAXTER R C, FIRTH S M.Involvement of pregnancy-associated plasma protein-A2 in insulin-like growth factor (IGF) binding protein-5 proteolysis during pregnancy:A potential mechanism for increasing IGF bioavailability[J].The Journal of Clinical Endocrinology and Metabolism, 2010, 95(3):1412-1420. [59] SCHNABEL R D, SONSTEGARD T S, TAYLOR J F, et al.Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families[J].Animal Genetics, 2005, 36(5):408-416. [60] WICKRAMASINGHE S, RINCON G, MEDRANO J F.Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle[J].Journal of Dairy Science, 2011, 94(3):1552-1558. [61] DE VRIES A, RISCO C A.Trends and seasonality of reproductive performance in Florida and Georgia dairy herds from 1976 to 2002[J].Journal of Dairy Science, 2005, 88(9):3155-3165. [62] REFSDAL A O.Reproductive performance of Norwegian cattle from 1985 to 2005:Trends and seasonality[J].Acta Veterinaria Scandinavica, 2007, 49:5. [63] OGAWA S, SATOH M.Random regression analysis of calving interval of Japanese Black cows[J].Animals, 2021, 11(1):202. [64] PUCKOWSKA P, BOROWSKA A, SZWAOZKOWSKI T, et al.Effects of a novel missense polymorphism within the SIGLEC5 gene on fertility traits in Holstein-Friesian cattle[J].Reproduction in Domestic Animals, 2019, 54(9):1163-1168. [65] 王梦琦, 倪炜, 唐程, 等.CXCR1基因编码区SNPs与荷斯坦牛泌乳性能和繁殖性状关联分析[J].东北农业大学学报, 2017, 48(11):35-42. WANG M Q, NI W, TANG C, et al.Association analysis between polymorphism of CXCR1 gene coding region and milk production and partial reproductive traits in Holstein cattle[J].Journal of Northeast Agricultural University, 2017, 48(11):35-42.(in Chinese) [66] 赵佳强, 周妍, 于倩楠, 等.中国荷斯坦奶牛FoxO1基因多态性及与繁殖性状关系研究[J].东北农业大学学报, 2013, 44(6):54-57. ZHAO J Q, ZHOU Y, YU Q N, et al.Polymorphism of FoxO1 gene and associations with reproduction traits in Holstein cattle of China[J].Journal of Northeast Agricultural University, 2013, 44(6):54-57.(in Chinese) [67] WIELGAT P, MROZ R M, STASIAK-BARMUTA A, et al.Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients[J].Advances in Experimental Medicine and Biology, 2015, 839:1-5. [68] 程蕾, 王定发, 刘晓华, 等.ISG15和OAS1在奶牛早期妊娠阶段外周血中的表达规律[J].畜牧兽医学报, 2015, 46(1):77-84. CHENG L, WANG D F, LIU X H, et al.Study on ISG15 and OAS1 transcriptions in peripheral blood of dairy cows during early pregnancy[J].Acta Veterinaria et Zootechnica Sinica, 2015, 46(1):77-84.(in Chinese) [69] JECMINKOVA K, MVLLER U, KYSELOVA J, et al.Association of leptin, Toll-like receptor 4, and chemokine receptor of interleukin 8 C-X-C motif single nucleotide polymorphisms with fertility traits in Czech Fleckvieh cattle[J].Asian-Australas Journal of Animal Sciences, 2018, 31(11):1721-1728. [70] CHIRIBAU C B, CHENG L, CUCORANU I C, et al.FOXO3A regulates peroxiredoxin Ⅲ expression in human cardiac fibroblasts[J].The Journal of Biology Chemistry, 2008, 283(13):8211-8217. [71] RONNEBAUM S M, PATTERSON C.The FoxO family in cardiac function and dysfunction[J].Annual of Review Physiology, 2010, 72:81-94. |
[1] | ZHANG Dianqi, MA Xinhao, YANG Zhimei, MEI Chugang, ZAN Linsen. Bioinformatics Analysis of PAI1 Gene and Its Effect on the Proliferation and Differentiation of Intramuscular Adipocytes in Qinchuan Beef Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1729-1741. |
[2] | PENG Yangxiang, YANG Zhenbiao, YAN Kuiyou, WANG Han, HU De, WANG Zun, LIU Ning, ZHAO Liansheng. From Artificial to Intelligent:Research Progress of Individual Idendification Technology for Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1855-1866. |
[3] | LI Mingbo, GAO Qingshan, LI Guanhao, ZHANG Kui, CUI Lianhua, HOU Lina. Effects of Chinese Herbal Medicine Feed Additives on Meat Quality and Flavor Substances in Yanbian Yellow Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 531-542. |
[4] | SUN Haobin, XUE Yuyang, NIU Yujie, NIU Junli, ZHANG Wenju, CHEN Cheng. Effects of Whole Triticale Hay on Nutrient Apparent Digestibility,Serum Biochemical Indices and Rumen Fermentation of Breeding Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(1): 106-114. |
[5] | TAN Haoyun, LIU Qian, HU Debao, ZHANG Linlin, LI Xin, DING Xiangbin, GUO Hong, GUO Yiwen. Effects of Interference lnc721 on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3292-3300. |
[6] | XU Haoqi, XU Jingyi, HU Lirong, ZHANG Fan, LUO Hanpeng, ZHANG Hailiang, SHI Rui, LI Xiang, LIU Lin, LIU Qiaoxiang, GUO Gang, WANG Yachun. Polymorphism of PIK3CB Gene and Its Association Analysis with Reproductive and Milk Production Traits in Chinese Holstein Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3438-3452. |
[7] | YANG Min, GAO Yu, XU Zihao, ZHANG Jiulong, DELINUER·Baishanbieke, REN Wanping. Effects of Feeding Steam-flaked Corn on Weight Gain,Rumen Fermentation and Microbial Diversity of Xinjiang Brown cattle [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 2961-2970. |
[8] | YANG Tao, ZHANG Mingjie, XU Ran, ZHANG Han, ZHANG Mengmeng, WU Keliang. Study on Genetic Evaluation of Reproductive and Growth Traits in Pigs by BLUP Method [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 2971-2981. |
[9] | TANG Bihui, PAN Lu, LI Haiying, ZHAO Xiaoyu, WU Yingping, JIANG Teng, DING Yawen, WU Linan, CAO Yan, MEI Zhiyong. Genome-wide Selection Signal Analysis of Laying Traits in Geese [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3015-3025. |
[10] | REN Jianming, JI Peng, ZHANG Xiaosong, WEI Yanming, ZHU Xiaopeng, ZHU Yueming. Effects of Jianpi Xiaodao Chinese Herbal Compound on Growth Performance, Rumen Fermentation Parameters and Serum Indexes of 6-month-old Simmental Crossbred Cattles [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(7): 2593-2600. |
[11] | HE Zhanxing, HUANG Meifen, CHENG Yumei, ZHANG Quanpeng, ZHANG Jicai, YANG Kai, WANG Ankui, ZHOU Yaping, HUANG Bizhi. Comparison of Colostrum Physicochemical Characterization Between Dulong Cattle and Yunling Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2156-2164. |
[12] | XUE Qian, LI Guohui, XING Weijie, ZHOU Chenghao, ZHANG Huiyong, YIN Jianmei, ZHU Yunfen, CAO Yuxia, SU Yijun, HAN Wei. Screening of lncRNA Related to Inbreeding Depression of Reproduction in Chickens [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2176-2185. |
[13] | MA Yanru, YU Yongsheng, CAO Yang, QIN Lihong, ZHAO Yumin, WU Jian. Polymorphism of PDK4 Gene and Its Association with Meat Quality Traits in Chinese Steppe Red Cattle [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2186-2194. |
[14] | LI Changyang, GAO Bingnan, REN Yulong, ZHANG Hao, SUN Yu, WEI Xiao, WANG Qiuju. Isolation,Identification and Biochemical Characteristics Analysis of Bovine Rumen Functional Bacteria [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(5): 1757-1764. |
[15] | YU Simeng, GUO Zhanbao, HU Jian, ZHOU Zhengkui, HOU Shuisheng. Analysis of Genetic Differentiation Between IAS Grassland Ducks and Cherry Valley Ducks [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(3): 801-808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||