China Animal Husbandry and Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (9): 3483-3490.doi: 10.16431/j.cnki.1671-7236.2021.09.041
• Basic Veterinary Medicine • Previous Articles Next Articles
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan
Revised:
2021-04-16
Online:
2021-09-20
Published:
2021-09-17
CLC Number:
YUAN Weiyi, LIN Xiaofeng, ZHANG Yuhao, XIAO Jinnan, WANG Yan. Research Progress on Antimicrobial and Disinfectant Resistance of Methicillin-resistant Staphylococcus pseudintermedius in Canine Pyoderma[J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(9): 3483-3490.
[1] RAFATPANAH S, RAD M, MOVASSAGHI A R, KHOSHNEGAH J, et al. Clinical, bacteriological and histopathological aspects of first-time pyoderma in a population of Iranian domestic dogs:A retrospective study[J]. Iran Journal of Veterinary Research, 2020, 21(2):130-135. [2] ABOUELKHAIR M A, BEMIS D A, KANIA S A, et al. Characterization of recombinant wild-type and nontoxigenic protein a from Staphylococcus pseudintermedius[J]. Virulence, 2018, 9(1):1050-1061. [3] FADOK V A, IRWIN K.Sodium hypochlorite/salicylic acid shampoo for treatment of canine staphylococcal pyoderma[J]. Journal of the American Animal Hospital Association, 2019, 55(3):117-123. [4] BÄUMER W, BIZIKOVA P, JACOB M, et al. Establishing a canine superficial pyoderma model[J]. Applied Microbiology and Biotechnology, 2017, 122(2):331-337. [5] HYUN J E, CHUNG T H, HWANG C Y, et al. Identification of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea[J]. Veterinary Dermatology, 2018, 29(3):186-191. [6] AALTONEN K, KANT R, EKLUND M, et al. Streptococcus halichoeri:Comparative genomics of an emerging pathogen[J]. International Journal of Genomics, 2020, 18:8708305. [7] ZHENG Y, QIN C, ZHANG X, et al. The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression[J]. Microbial Pathogenesis, 2020, 138:103797. [8] DEVRIESE L A, VANCANNEYT M, BAELE M, et al. Staphylococcus pseudintermedius sp.nov., a coagulase-positive species from animals[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 4):1569-1573. [9] PARLET C P, BROWN M M, HORSWILL A R.Commensal staphylococci influence Staphylococcus aureus skin colonization and disease[J]. Trends Microbiology, 2019, 27(6):497-507. [10] BERENDS E T M, ZHENG X, ZWACK E E, et al. Staphylococcus aureus impairs the function of and kills human dendritic cells via the lukab toxin[J]. mBio, 2019, 10(1):e01918-18. [11] BALRAADJSING P P, DE JONG E C, VAN WAMEL W J B, et al. Dendritic cells internalize Staphylococcus aureus more efficiently than Staphylococcus epidermidis, but do not differ in induction of antigen-specific T cell proliferation[J]. Microorganisms, 2019, 8(1):19. [12] SEWID A H, HASSAN M N, AMMAR A M, et al. Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM IgG Fc and Fab[J]. PLoS One, 2019, 14(7):e0219817. [13] 周传铎, 赵然, 金艺鹏, 等.北京地区警犬皮肤伪中间型葡萄球菌药敏试验及耐药基因筛查[J]. 中国兽医杂志, 2016, 52(11):100-103. ZHOU C D, ZHAO R, JIN Y P, et al. Antibacterial sensitive test and drug-resistant genetic screening for Staphylococcus pseudintermedius from the skins of police dogs in Beijing area[J]. Chinese Journal of Veterinary Medicine, 2016, 52(11):100-103.(in Chinese) [14] 刘文静, 徐英春, 杨启文, 等.2019年北京协和医院细菌耐药性分析[J]. 协和医学杂志:2021, 12(2):202-209. LIU W J, XU Y C, YANG Q W, et al. Analysis of antimicrobial resistance in Peking Union Medical College Hospital in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2):202-209.(in Chinese) [15] FEßLER A T, SCHUENEMANN R, KADLEC K, et al. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital[J]. Veterinary Microbiology, 2018, 221:153-158. [16] WORTHING K A, ABRAHAM S, COOMBS G W, et al. Clonal diversity and geographic distribution of methicillin-resistant Staphylococcus pseudintermedius from Australian animals:Discovery of novel sequence types[J]. Veterinary Microbiology, 2018, 213:58-65. [17] NISA S, BERCKER C, MIDWINTER A C, et al. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand[J]. Scientific Reports, 2019, 9(1):1271. [18] 国家卫生计生委合理用药专家委员会.2018年全国细菌耐药监测报告[J]. 中国合理用药探索, 2020, 17(1):1-10. COMMITTEE OF EXPERTS ON RATIONAL DRUG USE OF THE NATIONAL HEALTH AND FAMILY PLANNING COMMISSION OF THE P.R.CHINA.2018 National bacterial resistance surveillance report[J]. Chinese Journal of Rational Drug Use, 2020, 17(1):1-10.(in Chinese) [19] CRAFT K M, NGUYEN J M, BERG L J, et al. Methicillin-resistant Staphylococcus aureus (MRSA):Antibiotic-resistance and the biofilm phenotype[J]. Medchemcomm, 2019, 10(8):1231-1241. [20] WU S, LIN K, LIU Y, et al. Two-component signaling pathways modulate drug resistance of Staphylococcus aureus (Review)[J]. Biomedical Reports, 2020, 13(2):5. [21] BAJWA J.Canine superficial pyoderma and therapeutic considerations[J]. Canadian Veterinary Journal, 2016, 57(2):204-206. [22] GAGETTI P, WATTAM A R, GIACOBONI G, et al. Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in Argentina[J]. BMC Veterinary Research, 2019, 15(1):264. [23] GONZÁLEZ-DOMÍNGUEZ M S, CARVAJAL H D, CALLE-ECHEVERRI D A, et al. Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S.aureus, S.pseudintermedius, and S.schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles[J]. Frontiers in Veterinary Science, 2020, 7:376. [24] WEGENER A, BROENS E M, ZOMER A, et al. Comparative genomics of phenotypic antimicrobial resistances in methicillin-resistant Staphylococcus pseudintermedius of canine origin[J]. Veterinary Microbiology, 2018, 225:125-131. [25] FROSINI S M, BOND R, RANTALA M, et al. Genetic resistance determinants to fusidic acid and chlorhexidine in variably susceptible staphylococci from dogs[J]. BMC Microbiology, 2019, 19(1):81. [26] RAFFERTY R, ROBINSON V H, HARRIS J, et al. A pilot study of the in vitro antimicrobial activity and in vivo residual activity of chlorhexidine and acetic acid/boric acid impregnated cleansing wipes[J]. BMC Veterinary Research, 2019, 15(1):382. [27] WALKER M A, SINGH A, GIBSON T W, et al. Presence of qac genes in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius and their impact on chlorhexidine digluconate susceptibility[J]. Veterinary Surgery, 2020, 49(5):971-976. [28] MURAYAMA N, NAGATA M, TERADA Y, et al. In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan[J]. Veterinary Dermatology, 2013, 24(1):126-129. [29] 向蓉, 贾潇岳, 陈光辉, 等.社区和医院获得性耐甲氧西林金黄色葡萄球菌耐药基因及耐消毒剂基因的检测[J]. 中国消毒学杂志, 2020, 37(6):436-440. XIANG R, JIA X Y, CHEN G H, et al. Detection of drug resistance gene and disinfectant resistance gene of methicillin-resistant Staphylococcus aureus in community and hospital[J]. Chinese Journal of Disinfection, 2020, 37(6):436-440.(in Chinese) [30] 纵帅, 马萍, 徐萍萍, 等.临床分离耐甲氧西林金黄色葡萄球菌耐药表型及耐消毒剂基因检测[J]. 中国消毒学杂志, 2016, 33(9):841-844. ZONG S, MA P, XU P P, et al. Detection of antibiotic resistance phenotype and disinfectant resistant gene of MRSA isolated from nosocomial infection[J]. Chinese Journal of Disinfection, 2016, 33(9):841-844.(in Chinese) [31] 孟含, 李庆, 贺苏皖, 等.市售猪肉金黄色葡萄球菌的分离及菌株耐消毒剂基因的检测[J]. 现代食品科技, 2020, 36(4):296-303. MENG H, LI Q, HE S W, et al. Isolation of Staphylococcus aureus from pork source and the detection of disinfectant resistance genes[J]. Modern Food Science and Technology, 2020, 36(4):296-303.(in Chinese) [32] LIU Q, ZHAO H, HAN L, et al. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA)[J]. Diagnostic Microbiology and Infectious, 2015, 82(4):278-283. [33] WEST A M, TESKA P J, LINEBACK C B, et al. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy[J]. Antimicrobial Resistance and Infection Control, 2018, 7:49. [34] LINEBACK C B, NKEMNGONG C A, WU S T, et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds[J] .Antimicrobial Resistance and Infection Control, 2018, 7:154. [35] KONG H, FANG L, JIANG R, et al. Distribution of sasX, pvl, and qacA/B genes in epidemic methicillin-resistant Staphylococcus aureus strains isolated from East China[J]. Infection and Drug Resistance, 2018, 11:55-59. [36] NEUBERGER A, DU D, LUISI B F.Structure and mechanism of bacterial tripartite efflux pumps[J]. Research in Microbiology, 2018, 169(7-8):401-413. [37] SUN Y, HU X, GUO D, SHI C, et al. Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken[J]. Microbial Drug Resistance, 2019, 25(5):703-711. [38] YOON E J, CHABANE Y N, GOUSSARD S, et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii[J]. mBio, 2015, 6(2):e00309-15. [39] BAY D C, TURNER R J.Diversity and evolution of the small multidrug resistance protein family[J]. BMC Evolutionary Biology, 2009, 9:140. [40] SUBEDI D, VIJAY A K, WILLCOX M, et al. Study of disinfectant resistance genes in ocular isolates of Pseudomonas aeruginosa[J]. Antibiotics (Basel), 2018, 7(4):88. [41] WANG Q, XU Y, ZHAO X, et al. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation[J]. Journal of the American Chemical Society, 2007, 129(20):6380-6381. [42] WORTHING K A, MARCUS A, ABRAHAM S, et al. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius[J]. Veterinary Microbiology, 2018, 216:153-158. [43] SMITH J T, AMADOR S, MCGONAGLE C J, et al. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States[J]. Communications Biology, 2020, 3(1):282. [44] LU M, GONG T, ZHANG A, et al. Mobile genetic elements in Streptococci[J]. Current Issues in Molecular Biology, 2019, 32:123-166. [45] MC CARLIE S, BOUCHER C E, BRAGG R R, et al. Molecular basis of bacterial disinfectant resistance[J]. Drug Resistance Updates, 2020, 48:100672. [46] DURRANT M G, LI M M, SIRANOSIAN B A, et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation[J]. Cell Host & Microbe, 2020, 28(5):767. [47] HOSSEINI R, KUEPPER J, KOEBBING S, et al. Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements[J]. Microbial Biotechnology, 2017, 10(6):1558-1568. [48] NICOLAE DOPCEA G, DOPCEA I, NANU A E, et al. Resistance and cross-resistance in Staphylococcus spp.strains following prolonged exposure to different antiseptics[J]. Journal of Global Antimicrobial Resistance, 2020, 21:399-404. [49] WU D, LU R, CHEN Y, et al. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus[J]. Journal of Global Antimicrobial Resistance, 2016, 7:61-66. [50] BHARDWAJ P, HANS A, RUIKAR K, et al. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure[J]. Antimicrobial Agents and Chemotherapy, 2017, 62(1):e01235-17. [51] DENNY J, MUNRO C L.Chlorhexidine bathing effects on health-care-associated infections[J]. Biological Research for Nursing, 2017, 19(2):123-136. [52] KHAN S, BEATTIE T K, KNAPP C W, et al. Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water[J]. Chemosphere, 2016, 152:132-141. [53] MAERTENS H, DE REU K, MEYER E, et al. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry[J]. BMC Veterinary Research, 2019, 15(1):310. [54] HIJAZI K, MUKHOPADHYA I, ABBOTT F, et al. Susceptibility to chlorhexidine amongst multidrugresistant clinical isolates of Staphylococcus epidermidis from bloodstream infections[J]. International Journal of Antimicrobial Agents, 2016, 48(1):86-90. [55] WALES A D, DAVIES R H.Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens[J]. Antibiotics (Basel), 2015, 4(4):567-604. [56] PARTRIDGE S R, KWONG S M, FIRTH N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018, 31(4):e00088-17. [57] GILLINGS M R.Lateral gene transfer, bacterial genome evolution, and the anthropocene[J]. Annals of the New York Academy of Sciences, 2017, 1389(1):20-36. [58] PAL C, ASIANI K, ARYA S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313. [59] GNANADHAS D P, MARATHE S A, CHAKRAVORTTY D, et al. Biocides-resistance, cross-resistance mechanisms and assessment[J]. Expert Opinion on Investigational Drugs, 2013, 22(2):191-206. [60] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16:964. [61] PAUL D, CHAKRABORTY R, MANDAL S M.Biocides and health-care agents are more than just antibiotics:Inducing cross to co-resistance in microbes[J]. Ecotoxicology and Environmental Safety, 2019, 174:601-610. [62] KIM M, WEIGAND MR, OH S, et al. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance[J]. Applied and Environmental Microbiology, 2018, 84(17):e01201-18. [63] AMSALU A, SAPULA S A, DE BARROS LOPES M, et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches:A case study in the development of multidrug resistance in environmental hotspots[J]. Microorganisms, 2020, 8(11):1647. [64] TENG Z H, GUO Y, LIU X Q, et al. The aflavin-3, 3'-digallate increases the antibacterial activity of β-lactam antibiotics by inhibiting metallo-β-lactamase activity[J]. Journal of Cellular and Molecular Medicine, 2019, 23(10):6955-6964. [65] LARSUPROM L, RUNGROJ N, LEKCHAROENSUK C, et al. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma[J]. Veterinary Dermatology, 2019, 30(6):487-490. [66] BÄUMER W, JACOBS M, TAMAMOTO-MOCHIZUKI C, et al. Efficacy study of a topical treatment with a plant extract with antibiofilm activities using an in vivo model of canine superficial pyoderma[J]. Veterinary Dermatology, 2020, 31:86-89. [67] 彭华, 李淑红, 聂佳伟, 等.犬脓皮病病原菌分离鉴定及耐药性分析[J]. 畜牧与饲料科学, 2019, 40(8):104-106. PENG H, LI S H, NIE J W, et al. Isolation, identification and antimicrobial resistance profile of pathogenic bacteria of canine pyoderma[J]. Animal Husbandry and Feed Science, 2019, 40(8):104-106.(in Chinese) [68] TRESCH M, MEVISSEN M, AYRLE H, et al. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review[J]. BMC Veterinary Research, 2019, 15(1):174. |
[1] | ZENG Chengrong, LIU Xin, BI Wenwen, MEI Shihui, HE Guangxia, ZHANG Junjie, WEN Ming, ZHOU Bijun, CHEN Jiangfeng, JIANG Haibo. Research Progress on Quorum Sensing System of Aeromonas hydrophila and Its Inhibitor Application [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1991-2000. |
[2] | WANG Lucai, SALANG Wenzhu, ZHANG Huanrong. Isolation,Identification and Drug Resistance and Pathogenicity Analysis of Salmonella Enteritidis from Avian [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(4): 1663-1674. |
[3] | WU Zhi, ZHANG Cong, YUAN Huisha, DONG Hongyan, DAI Lixia, JIA Luqi, WU Shuang, ZHU Shanyuan. Isolation,Identification,Virulence and Drug Resistance of Salmonella from Yellow Chicken [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(4): 1695-1706. |
[4] | CAO Yingying, LIANG Liang, ZENG Yirong, ZHONG Qinghua, YUAN Xiaofang, TANG Haibo, LENG Jing. Isolation,Identification and Biological Characteristics of Salmonella from Tupaia belangeri chinensis [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(4): 1718-1728. |
[5] | ZHU Qiqi, ZHANG Jiyu, WANG Chengye, WU Lingyu, WANG Weiwei, ZHU Zhen. Analysis of Multidrug Resistance and Prevalence of Animal-derived Escherichia coli in Hebei [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 1081-1092. |
[6] | HU Yifan, MA Jinghua, BAI Siqi, ZHAI Yimeng, LIU Jianxun, SONG Houhui, YANG Yongchun. Isolation,Identification and Biological Characteristics Analysis of Morganella morganii from Endometritis of South China Tiger (Panthera tigris amoyensis) [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 1271-1278. |
[7] | WANG Bingyi, MA Hongcai, ZOU Minghao, FAN Shijie, YUAN Zhenjie, Labaciren, DONG Hailong, ZENG Jiangyong. Isolation,Identification and Drug Resistance Analysis of Streptococcus from Yak [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 745-753. |
[8] | MA Xiaojiao, ZHAO Yankun, SHAO Wei, WU Yating, LI Ming, LIU Huimin, MENG Lu, CHEN He. Isolation,Identification and Drug Resistance Analysis of Staphylococcus aureus in Raw Milk in Some Areas of Xinjiang [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 789-797. |
[9] | ZHONG Huachen, WANG Lifang, GUO Chenyang, LIU Jialin, SONG Jie. Isolation,Identification and Drug Resistance Analysis of Pathogenic Bacteria from Milk Samples and Environment of Mastitis in Inner Mongolia [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 817-826. |
[10] | LIU Lin, WU Baoqing, GUO Xiaoyin, YU Wenhui, TIAN Lang. Study on Bacteriostatic Action of Aqueous Extract of Granati pericarpium Against Multi-drug Resistant Escherichia coli of Swine [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(1): 328-340. |
[11] | XU Minsheng, KE Haiyi, SHI Keda, YANG Dongxia, ZHAI Shaolun, ZANG Yingan, LI Chunling. Isolation and Identification of Actinobacillus pleuropneumoniae from Guangdong Province and Detection and Analysis of Drug Resistance Phenotype and Gene [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3212-3225. |
[12] | YANG Yuying, WANG Shaolin. Establishment of the Epidemiological Cut-off Values of Enterococcus Isolated from Animals for Antimicrobial Growth Promoters [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(7): 2788-2795. |
[13] | ZHANG Yu, MA Xi, ZHAO Jinbiao, LU Lin. Optimization of Fermentation Conditions and Determination of Antibacterial Activity of Bacillus licheniformis [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(7): 2812-2819. |
[14] | WANG Simin, YANG Jiangfeng, ZHAO Xiaokun, ZHANG Lei, GUO Jingjing, LAN Jinping, YU Xiaojie, WANG Jing. Isolation, Identification and Analysis of Pathogenicity and Drug Resistance of Salmonella from Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2385-2396. |
[15] | WNAG Tongzhao, ZHANG Fuxian, LEI Liancheng. Isolation, Identification and Drug Resistance Analysis of a Strain of Haemophilus parasuis Serotype 4 [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(3): 1096-1105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||