[1] 雷润雨,张宇,冯越,等.EFNA3和ITGA9基因多态性与公猪精液品质性状的关联分析[J].中国畜牧杂志,2024,60(8):233-239.LEI R Y,ZHANG Y,FENG Y,et al.Association analysis of EFNA3 and ITGA9 gene polymorphisms with semen quality traits in boars[J].Chinese Journal of Animal Science,2024,60(8):233-239.(in Chinese) [2] MCPHERSON F J,NIELSEN S G,CHENOWETH P J.Semen effects on insemination outcomes in sows[J].Animal Reproduction Science,2014,151(1-2):28-33. [3] MYROMSLIEN F D,TREMOEN N H,ANDERSEN-RANBERG I,et al.Sperm DNA integrity in Landrace and Duroc boar semen and its relationship to litter size[J].Reproduction in Domestic Animals, 2019,54(2):160-166. [4] XU K,YANG L,ZHANG L,et al.Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility[J].Development,2020,147(2):dev181057. [5] WIDLAK W,VYDRA N.The role of heat shock factors in mammalian spermatogenesis[J].Advances in Anatomy Embryology and Cell Biology,2017,222:45-65. [6] HAN F,DONG M Z,LEI W L,et al.Oligoasthenoteratospermia and sperm tail bending in PPP4C-deficient mice[J].Molecular Human Reproduction,2021,27(1):gaaa083. [7] LI Y,LI C,LIN S,et al.A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice[J].Biology of Reproduction,2017,96(3):587-597. [8] LEEM J,BAI G Y,OH J S.The capacity to repair sperm DNA damage in zygotes is enhanced by inhibiting WIP1 activity[J].Frontiers in Cell and Developmental Biology,2022,10:841327. [9] 吴雨,周迪,陈琨,等.种公猪精液品质候选基因的研究进展[J].中国畜禽种业,2023,19(6):105-113.WU Y,ZHOU D,CHEN K,et al.Research progress on candidate genes for semen quality in boars[J].The Chinese Livestock and Poultry Breeding,2023,19(6):105-113.(in Chinese) [10] YU Z,SONG Y,CAI M,et al.PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma[J].Aging,2021,13(17):21294-21308. [11] WEI Y,GAO Q,NIU P,et al.Integrative proteomic and phosphoproteomic profiling of testis from Wip1 phosphatase-knockout mice:Insights into mechanisms of reduced fertility[J].Molecular & Cellular Proteomics,2019,18(2):216-230. [12] 王楠,冯保亮,郑云曦,等.WIP1基因对3T3-L1前脂肪细胞增殖分化的影响及其在小鼠不同生长阶段的表达[J].中国畜牧兽医,2022,49(8):2869-2879.WANG N,FENG B L,ZHENG Y X,et al.Effects of WIP1 gene on proliferation and differentiation of 3T3-L1 preadipocytes and its expression in different growth stages of mice[J].China Animal Husbandry & Veterinary Medicine,2022,49(8):2869-2879.(in Chinese) [13] CHOI J,NANNENGA B,DEMIDOV O N,et al.Mice deficient for the wild-type p53-induced phosphatase gene (WIP1) exhibit defects in reproductive organs,immune function,and cell cycle control[J].Molecular and Cellular Biology,2002,22(4):1094-1105. [14] XU K,ZHANG X,LIU Z,et al.A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J].Science China-Life Sciences,2022,65(8):1535-1546. [15] 陈宗见,陈远昆,甘麦邻,等.品种和季节效应对公猪精液品质的影响[J].猪业科学,2022,39(2):114-116.CHEN Z J,CHEN Y K,GAN M L,et al.Influence of breed and seasonal effects on semen quality in boars[J].Swine Industry Science,2022,39(2):114-116.(in Chinese) [16] MANKOWSKA A,BRYM P,PAUKSZTO L,et al.Gene polymorphisms in boar spermatozoa and their associations with post-thaw semen quality[J].International Journal of Molecular Sciences,2020,21(5):1902. [17] FAN Z,MU Y,LI K,et al.Safety evaluation of transgenic and genome-edited food animals[J].Trends in Biotechnolog,2022,40(4):371-373. [18] 许美娜,朱奕舟,林思远,等.CRISPR/Cas9基因编辑技术在猪育种中的研究进展[J].广东农业科学,2022,49(8):87-96.XU M N,ZHU Y Z,LIN S Y,et al.Progress of the application of CRISPR/Cas9 gene editing technology in pig breeding[J].Guangdong Agricultural Sciences,2022,49(8):87-96.(in Chinese) [19] XIANG G,REN J,HAI T,et al.Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J].Cellular and Molecular Life Sciences,2018,75(24):4619-4628. [20] 车晶晶,徐奎,张秀玲,等.基于CRISPR/Cas9技术的WIP1基因敲除ST细胞的建立[J].畜牧兽医学报,2021,52(10):2814-2821.CHE J J,XU K,ZHANG X L,et al.Establishment of Wip1-knockout ST cells mediated by CR1SPR/Cas9 system[J].Acta Veterinaria et Zootechnica Sinica,2021,52(10):2814-2821.(in Chinese) [21] 王悦.猪WIP1基因与精液品质的关联研究及对ST细胞增殖的影响[D].广州:佛山科学技术学院,2022.WANG Y.Association between porcine WIP1 gene and semen quality and its effect on the proliferation of ST cells[D].Guangzhou:Foshan University,2022.(in Chinese) [22] 吴建忠.猪遗传育种技术研究进展[J].畜禽业,2004,3:58-60.WU J Z.Progress in pig genetic breeding technology[J].Livestock and Poultry Industry,2004,3:58-60.(in Chinese) [23] ZUIDEMA D,KERNS K,SUTOVSKY P.An exploration of current and perspective semen analysis and sperm selection for livestock artificial insemination[J].Animals (Basel),2021,11(12):3563. [24] WANG X,SIPILA P,SI Z,et al.CDK5RAP2 loss-of-function causes premature cell senescence via the GSK3beta/beta-catenin-WIP1 pathway[J].Cell Death & Disease,2021,13(1):9. [25] EREN M K,KARTAL N B,PILEVNELI H.Oncogenic WIP1 phosphatase attenuates the DNA damage response and sensitizes p53 mutant Jurkat cells to apoptosis[J].Oncology Letters,2021,21(6):479. [26] LEEM J,KIM J S,OH J S.WIP1 phosphatase suppresses the DNA damage response during G2/prophase arrest in mouse oocytes[J].Biology of Reproduction,2018,99(4):798-805. [27] PARK D S,YOON G H,KIM E Y,et al.WIP1 regulates Smad4 phosphorylation and inhibits TGF-beta signaling[J].EMBO Reports,2020,21(5):e48693. [28] FILIPPONI D,MULLER J,EMELYANOV A,et al.WIP1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation[J]. Cancer Cell,2013,24(4):528-541. [29] CHO S J,CHA B S,KWON O S,et al.WIP1 directly dephosphorylates NLK and increases Wnt activity during germ cell development[J].Biochimica et Biophysica Acta-Molecular Basis of Disease,2017,1863(4):1013-1022. [30] BLICHARSKA D,SZUCKO-KOCIUBA I,FILIP E,et al.CRISPR/Cas as the intelligent immune system of bacteria and archea[J].Postepy Biochemii,2022,68(3):235-245. [31] LEE H,YOON D E,KIM K.Genome editing methods in animal models[J].Animal Cells and Systems,2020,24(1):8-16. [32] WELLS K D,PRATHER R S.Genome-editing technologies to improve research,reproduction,and production in pigs[J].Molecular Reproduction and Development,2017,84(9):1012-1017. [33] LIU H,LI Z,HUO S,et al.Induction of G0/G1 phase arrest and apoptosis by CRISPR/Cas9-mediated knockout of CDK2 in A375 melanocytes[J].Molecular and Clinical Oncology,2020,12(1):9-14. [34] LIN Z,YAN J,SU J,et al.Novel OsGRAS19 mutant,D26,positively regulates grain shape in rice (Oryza sativa)[J].Functional Plant Biology,2019,46(9):857-868. [35] ZHOU A,ZHANG W,DONG X,et al.Porcine genome-wide CRISPR screen identifies the golgi apparatus complex protein COG8 as a pivotal regulator of Influenza virus infection[J].CRISPR Journal,2021,4(6):872-883. [36] SUN X,WANG J,MOU C,et al.Knockout of IRF3 and IRF7 genes by CRISPR/Cas9 technology enhances porcine virus replication in the swine testicular (ST) cell line[J].Biotechnology Journal,2024,19(1):e2300389. [37] YOUNIS S,NABOULSI R,WANG X,et al.The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells[J].FASEB Journal,2020,34(8):10250-10266. [38] 夏振涛,王楠,王婉洁,等.pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J].畜牧兽医学报,2024,55(8):3395-3407.XIA Z T,WANG N,WNAG W J,et al.Characteristics analysis of TGEV infection mediated by IPEC-J2 with knockout of pAPN gene[J].Acta Veterinaria et Zootechnica Sinica,2024,55(8):3395-3407.(in Chinese) [39] XU K,ZHOU Y,MU Y,et al.CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J].eLife,2020,9:e57132. [40] GAO X,TAO Y,LAMAS V,et al.Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents[J].Nature,2018,553(7687):217-221. [41] 李小平,王可品,刘琪帅,等.基因修饰工具猪模型的建立及应用[J].中国实验动物学报,2017,25(3):329-335.LI X P,WANG K P,LIU Q S,et al.Establishment and application of genetically modified pig tool models[J].Acta Laboratorium Animalis Scientia Sinica,2017,25(3):329-335.(in Chinese) [42] XUE C,GREENE E C.DNA repair pathway choices in CRISPR-Cas9-mediated genome editing[J].Trends in Genetics,2021,37(7):639-656. [43] SCHUBERT M S,THOMMANDRU B,WOODLEY J,et al.Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair[J].Scientific Reports,2021,11(1):19482. [44] SALSMAN J,DELLAIRE G.Precision genome editing in the CRISPR era[J].Biochemistry and Cell Biology,2017,95(2):187-201. [45] DOENCH J G,FUSI N,SULLENDER M,et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J].Nature Biotechnology,2016,34(2):184-191. [46] ZHANG J P,LI X L,LI G H,et al.Efficient precise knock in with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage[J].Genome Biology,2017,18(1):35. [47] HOU M,SUN S,FENG Q,et al.Genetic editing of the virulence gene of Escherichia coli using the CRISPR system[J]. PeerJ,2020,8:e8881. [48] 赖伟宁.绵羊全基因组编码区功能性SNP的挖掘及验证[D].长春:吉林大学,2023.LAI W N.Detection and validation of functional SNP in coding regions of the whole genome of domesticated sheep[D].Changchun:Jilin University,2023.(in Chinese) [49] CLAUSSNITZER M,DANKEL S N,KIM K H,et al.FTO obesity variant circuitry and adipocyte browning in humans[J]. New England Journal of Medicine,2015,373(10):895-907. [50] HUA J T,AHMED M,GUO H,et al.Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19[J].Cell,2018,174(3):564-575. [51] CHAO T,LIU Z,ZHANG Y,et al.Precise and rapid validation of candidate gene by allele specific knockout with CRISPR/Cas9 in wild mice[J].Frontiers in Genetics,2019,10:124. [52] CAPON S J,BAILLIE G J,BOWER N I,et al.Utilising polymorphisms to achieve allele-specific genome editing in zebrafish[J].Biology Open,2017,6(1):125-131. |