[1] SHI H,LI T,SU M,et al.Whole genome sequencing revealed genetic diversity,population structure,and selective signature of Panou Tibetan sheep[J]. BMC Genomics,2023,24(1):50. [2] YANG Z,ZHAO A,TENG M,et al.Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions[J].Evolutionary Applications,2024,17(2):e13657. [3] QI L,XIAO L,FU R,et al.Genetic characteristics and selection signatures between Southern Chinese local and commercial chickens[J].Journal of Poultry Science,2024,103(7):103863. [4] YANG K,ZHANG J,ZHAO Y,et al.Whole genome resequencing revealed the genetic relationship and selected regions among Baicheng-You,Beijing-You,and European-Origin broilers[J].Biology (Basel),2023,12(11):1397. [5] CHU J,MA Y,SONG H,et al.The genomic characteristics affect phenotypic diversity from the perspective of genetic improvement of economic traits[J].iScience,2023,26(4):106426. [6] GEBRESELASE H B,NIGUSSIE H,WANG C,et al.Genetic diversity,population structure and selection signature in Begait goats revealed by whole-genome sequencing[J].Animals (Basel),2024,14(2):307. [7] ZHU Z,LIN R,ZHAO B,et al.Whole-genome resequencing revealed the population structure and selection signal of 4 indigenous Chinese laying ducks[J].Journal of Poultry Science,2024,103(7):103832. [8] ZHANG L,LI H,ZHAO X,et al.Whole genome resequencing reveals the adaptability of native chickens to drought,tropical and frigid environments in Xinjiang[J].Journal of Poultry Science,2024,103(9):103947. [9] BOVO S,RIBANI A,MUNOZ M,et al.Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems[J].Genetics Selection Evolution,2020,52(1):33. [10] LI X,YANG J,SHEN M,et al.Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J].Nature Communication,2020,11(1):2815. [11] 施会彬.基于全基因组重测序揭示盘欧羊选育群体遗传多样性与选择信号[D].兰州:甘肃农业大学,2023.SHI H B.Whole genome resequencing reveals genetic diversity and selection signals in Panou sheep selection breeding[D].Lanzhou:Gansu Agricultural University 2023.(in Chinese) [12] 王延晖,张芹,王冰柯,等.黄河鲤全基因组选择信号分析[J].水产科学,2024,43(2):264-272.WANG Y H,ZHANG Q,WANG B K.Genome-wide selection signature of Yellow River common carp cyprinus carpio haematopteru[J].Fisheries Science,2024,43(2):264-272.(in Chinese) [13] 陶伟,侯黎明,王彬彬,等.利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J].畜牧兽医学报,2022,53(5):1373-1383.TAO W,HOU L M,WANG B B,et al.Identification of candidate genes affecting drip loss in pork by genome-wide selection signal method[J].Acta Veterinaria et Zootechnica Sinica,2022,53(5):1373-1383.(in Chinese) [14] XIE X F,WANG Z Y,ZHONG Z Q,et al.Genome-wide scans for selection signatures in indigenous chickens reveal candidate genes associated with local adaptation[J].Animal,2024,18(5):101151. [15] ZHAO H,SUN G,MU X,et al.Genome-wide selective signatures mining the candidate genes for egg laying in goose[J].BMC Genomics,2023,24(1):750. [16] CHEN H,LUO K,WANG C,et al.Genomic characteristics and selection signals of Zhongshan ducks[J].Animal,2023,17(5):100797. [17] 邓绍志.拉伯高脚鸡简介与展望[J].中国畜禽种业,2017,13(3):133-135.DENG S Z.Introduction and prospects of Labai High-leg chicken[J].The Chinese Livestock and Poultry Breeding,2017,13(3):133-135.(in Chinese) [18] 王欣,罗成峰,陶清海,等.拉伯高脚鸡线粒体DNA D-loop序列变异与起源分化研究[J].中国家禽,2016,38(11):14-18.WANG X,LUO C F,TAO Q H,et al.Sequence variation of mtDNA D-loop and origin of Labai High-leg chicken[J].China Poultry,2016,38(11):14-18.(in Chinese) [19] 汪春艳,赵庭辉,肖文学.拉伯高脚鸡林地生态饲养管理技术[J].当代畜牧,2017,15:2-4.WANG C Y,ZHAO T H,XIAO W X.Ecological feeding and management of Labai High-leg chicken in woodland[J].Contemporary Animal Husbandry,2017,15:2-4.(in Chinese) [20] 张学玉,杨比哈,肖文忠,等.拉伯高脚鸡遗传资源保护与产业开发对策建议[J].当代畜牧,2017,6:35-37.ZHANG X Y,YANG B H,XIAO W Z,et al.Suggestions on the protection of genetic resources and industrial development of Labai High-leg chicken[J].Contemporary Animal Husbandry,2017,6:35-37.(in Chinese) [21] ZHONG H A,KONG X Y,ZHANG Y W,et al.Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient[J].Evolutionary Applications,2022,15(12):2100-2112. [22] LI H,DURBIN R.Fast and accurate long-read alignment with Burrows-Wheeler transform[J].Bioinformatics,2010,26(5):589-595. [23] LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079. [24] MCKENNA A,HANNA M,BANKS E,et al.The genome analysis toolkit:A MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Research,2010,20(9):1297-1303. [25] WANG K,LI M,HAKONARSON H.ANNOVAR:Functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Research,2010,38(16):e164. [26] LEE T H,GUO H,WANG X,et al.SNPhylo:A pipeline to construct a phylogenetic tree from huge SNP data[J].BMC Genomics,2014,15:162. [27] XIE J,CHEN Y,CAI G,et al.Tree visualization by one table (tvBOT):A web application for visualizing,modifying and annotating phylogenetic trees[J].Nucleic Acids Research,2023,51(W1):W587-W592. [28] ASADOLLAHPOUR NANAEI H,KHARRATI-KOOPAEE H,ESMAILIZADEH A.Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens[J].BMC Genomics,2022,23(1):224. [29] LAWAL R A,MARTIN S H,VANMECHELEN K,et al.The wild species genome ancestry of domestic chickens[J].BMC Biology 2020,18(1):13. [30] 欧阳依娜,阮谦,钱林东,等.大围山微型鸡、云龙矮脚鸡和拉伯高脚鸡mtDNA D-loop遗传多样性分析[J].云南农业大学学报(自然科学),2017,32(1):70-77.OUYANG Y N,RUAN Q,QIAN L D,et al.Genetic diversity of Daweishan mini,Yunlong short leg and La-bai high leg chickens in Yunnan based on mitochondrial DNA D-loop sequences[J].Journal of Yunnan Agricultural University (Natural Science),2017,32(1):70-77.(in Chinese) [31] PANIGRAHI M,RAJAWAT D,NAYAK S S,et al.Landmarks in the history of selective sweeps[J].Animal Genetics,2023,54(6):667-688. [32] UTSUNOMIYA Y T,PEREZ O’ BRIEN A M,SONSTEGARD T S,et al.Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods[J].Public Library of Science,2013,8(5):e64280. [33] ZHANG W,JIN M,LI T,et al.Whole-genome resequencing reveals selection signal related to sheep wool fineness[J]. Animals (Basel),2023,13(18):2944. [34] 职毅豪.河南省地方鸡群体遗传结构分析和鸡遗传资源分子鉴别系统开发利用[D].郑州:河南农业大学,2023.ZHI Y H.Genome-wide genetic structure analysis of Henan indigenous chicken breeds and development and utilization of a molecular identification system for chicken genetic resources[D].Zhengzhou:Henan Agricultural University,2023.(in Chinese) [35] HUANGFU R,LI H,LUO Y,et al.Illuminating genetic diversity and selection signatures in Matou goats through whole-genome sequencing analysis[J].Genes (Basel),2024,15(7):909. [36] 雷志惠,张利平,赵洪昌,等.全基因组选择信号揭示绵羊毛囊发育及脱毛性状相关的候选基因[J].畜牧兽医学报,2022,53(2):381-390.LEI Z H,ZHANG L P,ZHAO H C,et al.Genome wide selection signals reveal candidate genes associated with the sheep of hair follicle development and depilation traits[J].Acta Veterinaria et Zootechnica Sinica,2022,53(2):381-390.(in Chinese) [37] 栗登攀,马克岩,韩金涛,等.永登七山羊全基因组选择信号检测分析[J].畜牧兽医学报,2023,54(11):4577-4588.LI D P,MA K Y,HAN J T,et al.Detection and analysis of whole genome selection signal of Yongdeng Qishan sheep[J].Acta Veterinaria et Zootechnica Sinica,2023,54(11):4577-4588.(in Chinese) [38] ZHI Y,WANG D,ZHANG K,et al.Genome-wide genetic structure of Henan indigenous chicken breeds[J].Animals (Basel),2023,13(4):753. [39] ZHANG Y,WEI Z,ZHANG M,et al.Population structure and selection signal analysis of Nanyang cattle based on whole-genome sequencing data[J].Genes (Basel),2024,15(3):351. [40] MAGLO K N,MERSHA T B,MARTIN L J.Population genomics and the statistical values of race:An interdisciplinary perspective on the biological classification of human populations and implications for clinical genetic epidemiological research[J].Frontiers in Genetics,2016,7:22. [41] XU D,ZHU W,WU Y,et al.Whole-genome sequencing revealed genetic diversity,structure and patterns of selection in Guizhou indigenous chickens[J].BMC Genomics,2023,24(1):570. [42] LIU C,WANG D,HE Y,et al.Population structure and genetic diversity analysis of "Yufen 1" H line chickens using whole-genome resequencing[J].Life (Basel),2023,13(3):793. [43] HUANG R,ZHU C,ZHEN Y.Genetic diversity,demographic history,and selective signatures of Silkie chicken[J].BMC Genomics,2024,25(1):754. [44] LI X,SU R,WAN W,et al.Identification of selection signals by large-scale whole-genome resequencing of cashmere goats[J].Scientific Reports,2017,7(1):15142. [45] 杜彩虹.岷县黑裘皮羊全基因组遗传变异挖掘及选择信号分析[D].兰州:兰州大学,2022.DU C H.Genome wide genetic variation mining and selection signal analysis of Minxian Black Fur sheep[D].Lanzhou:Lanzhou University,2022.(in Chinese) [46] 徐扩卫,李卓辉,冷堂健,等.基于全基因组重测序SNP分析宁蒗高原鸡保种群的群体遗传多样性和群体遗传结构[J].畜牧兽医学报,2024,55(12):5498-5510.XU K W,LI Z H,LENG T J,et al.Analysis of population genetic diversity and population genetic structure of conservation population in Ninglang Plateau chickens based on whole-genome resequencing SNP[J]. Acta Veterinaria et Zootechnica Sinica,2024,55(12):5498-5510. [47] HUANG F,FU M,LI J,et al.Analysis and prediction of protein stability based on interaction network,gene ontology,and KEGG pathway enrichment scores[J].Biochim Biophys Acta Proteins Proteom,2023,1871(3):140889. [48] YANG L,ZHANG Y H,HUANG F,et al.Identification of protein-protein interaction associated functions based on gene ontology and KEGG pathway[J].Frontiers in Genetics,2022,13:1011659. [49] REID C,ROMERO M,CHANG S B,et al.Long-term hypoxia negatively influences Ca2+ signaling in basilar arterial myocytes of fetal and adult sheep[J].Frontiers in Physiology,2021,12:760176. [50] CHAI Z X,XIN J W,ZHANG C F,et al.Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai-Tibet plateau[J].BMC Ecology and Evolution,2020,20(1):137. [51] ZHANG H,WU C X,CHAMBA Y,et al.Blood characteristics for high altitude adaptation in Tibetan chickens[J].Poultry Science,2007,86(7):1384-1389. [52] YERSIN A G,HUFF W E,KUBENA L F,et al.Changes in hematological,blood gas,and serum biochemical variables in broilers during exposure to simulated high altitude[J].Avian Diseases,1992,36(2):189-196. [53] 云南省畜禽遗传资源委员会.云南省畜禽遗传资源志[M].昆明:云南科技出版社,2015.YUNNAN PROVINCIAL ANIMAL AND POULTRY GENETIC RESOURCES COMMITTEE.Genetic Resources of Animal and Poultry in Yunnan Province[M].Kunming:Yunnan Science and Technology Press,2015.(in Chinese) [54] LIU J,WANG F,LUO F.The role of JAK/STAT pathway in fibrotic diseases:Molecular and cellular mechanisms[J]. Biomolecules,2023,13(1):119. [55] RODARI M M,CERF-BENSUSSAN N,PARLATO M.Dysregulation of the immune response in TGF-beta signalopathies[J].Frontiers in Immunology,2022,13:1066375. [56] CAI P,ZHU Q,CAO Q,et al.Quercetin and allicin can alleviate the hepatotoxicity of lead (Pb) through the PI3K signaling pathway[J].Journal of Agricultural and Food Chemistry,2021,69(32):9451-9460. [57] AFINANISA Q,CHO M K,SEONG H A.AMPK localization:A key to differential energy regulation[J].International Journal of Molecular Sciences,2021,22(20):10921. [58] SUN J,PAN Y,LI X,et al.Quercetin attenuates osteoporosis in orchiectomy mice by regulating glucose and lipid metabolism via the GPRC6A/AMPK/mTOR signaling pathway[J].Frontiers in Endocrinology,2022,13:849544. [59] SUZUKI A,MINAMIDE M,IWAYA C,et al.Role of metabolism in bone development and homeostasis[J].International Journal of Molecular Sciences,2020,21(23):8992. [60] YAHARA Y,NGUYEN T,ISHIKAWA K,et al.The origins and roles of osteoclasts in bone development,homeostasis and repair[J].Development,2022,149(8):dev199908. [61] WANG Q,LI D,GUO A,et al.Whole-genome resequencing of Dulong chicken reveal signatures of selection[J].British Poultry Science,2020,61(6):624-631. [62] TEVEN C M,FARINA E M,RIVAS J,et al.Fibroblast growth factor (FGF) signaling in development and skeletal diseases[J].Genes and Diseases,2014,1(2):199-213. [63] FAROOQ M,KHAN A W,KIM M S,et al.The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration[J].Cells,2021,10(11):3242. [64] LEE S H,GOLINSKA M,GRIFFITHS J R.HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells[J].Cells,2021,10(9):2371. [65] BURTSCHER J,MALLET R T,PIALOUX V,et al.Adaptive responses to hypoxia and/or hyperoxia in humans[J].Antioxid Redox Signal,2022,37(13-15):887-912. [66] VIALLARD C,LARRIVEE B.Tumor angiogenesis and vascular normalization:Alternative therapeutic targets[J].Angiogenesis,2017,20(4):409-426. [67] ZHANG Y,ZHANG H,ZHANG B,et al.Identification of key HIF-1alpha target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos[J].Gene,2020,729:144321. [68] TIWARI M,SODHI M,SHARMA M,et al.Hypoxia related genes modulate in similar fashion in skin fibroblast cells of yak (Bos grunniens) adapted to high altitude and native cows (Bos indicus) adapted to tropical climate during hypoxia stress[J].International Journal of Biometeorology,2024,68(8):1675-1687. [69] YANG K,ZHANG Z,LI Y,et al.Expression and distribution of HIF-1alpha,HIF-2alpha,VEGF,VEGFR-2 and HIMF in the kidneys of Tibetan sheep,plain sheep and goat[J].Folia Morphologica,2020,79(4):748-755. [70] YANG Y,YUAN H,YANG T,et al.The expression regulatory network in the lung tissue of Tibetan pigs provides insight into hypoxia-sensitive pathways in high-altitude hypoxia[J].Frontiers in Genetics,2021,12:691592. [71] BROUND M J,ASGHARI P,WAMBOLT R B,et al.Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice[J].Journal of Cardiovascular Translational Research,2012,96(3):372-380. [72] DULHUNTY A F.Molecular changes in the cardiac RyR2 with catecholaminergic polymorphic ventricular tachycardia (CPVT)[J].Frontiers in Physiology,2022,13:830367. [73] CHEN X,BARAJAS-MARTÍNEZ H,XIA H,et al.Clinical and functional genetic characterization of the role of cardiac calcium channel variants in the early repolarization syndrome[J].Frontiers in Cardiovascular Medicine, 2021,8:680819. [74] SELENZ C,COMPES A,NILL M,et al.EGFR inhibition strongly modulates the tumour immune microenvironment in EGFR-Driven non-small-cell lung cancer[J].Cancers (Basel),2022,14(16):3943. [75] HUANG M,YANG B,CHEN H,et al.The fine-scale genetic structure and selection signals of Chinese indigenous pigs[J].Evolutionary Applications,2020,13(2):458-475. [76] LI W,LI Y,CHU Y,et al.PLCE1 promotes myocardial ischemia-reperfusion injury in H/R H9c2 cells and I/R rats by promoting inflammation[J].Bioscience Reports,2019,39(7):BSR20181613. [77] XU X,WANG C,XU C,et al.Genomic evolution of island birds from the view of the Swinhoe’s pheasant (Lophura swinhoii)[J].Molecular Ecology Resources,2024,24(2):e13896. [78] ABDELMANOVA A S,DOTSEV A V,ROMANOV M N,et al.Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and meat-type White Cornish chickens[J].Biology (Basel),2021,10(9):876. |