中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (3): 1057-1069.doi: 10.16431/j.cnki.1671-7236.2025.03.008
• 营养与饲料 • 上一篇
冯谦洁1, 文璟2, 许艳丽3, 乐祥鹏1
修回日期:
2024-11-15
发布日期:
2025-02-22
通讯作者:
乐祥鹏
作者简介:
冯谦洁,E-mail:fengqianjie@126.com。
基金资助:
FENG Qianjie1, WEN Jing2, XU Yanli3, YUE Xiangpeng1
Revised:
2024-11-15
Published:
2025-02-22
摘要: 肉品质的改良是目前家畜生产的重要目标,肌纤维作为肌肉组织的重要组成部分,其各类型占比组合对肉品质有重要的影响。成熟肌纤维由中胚层祖细胞经历成肌细胞、肌管、初级肌纤维和次级肌纤维几个发育过程形成。家畜体内肌纤维理化性质并不统一,一般依据肌纤维中肌球蛋白重链的类型对肌纤维进行分型,常规的分子分型方法即可进行肌球蛋白重链分型鉴定,这些方法将肌纤维分为Ⅰ型(氧化型)纤维和Ⅱ型(酵解型)纤维及中间类型纤维,其中Ⅰ型和ⅡA型肌纤维对肉品质的影响更为积极,且肌纤维具有较强的可塑性,受多种通路因子和表观遗传现象调控。尽管调控家畜肌纤维的通路因子较为明晰,但由于肌纤维类型性状的复杂性,仍缺乏一致认可的分子遗传标记,目前认为,SSC基因家族可能是后续进行深度挖掘验证的目标基因家族。除分子标记的筛选外,对位点的进一步挖掘和验证也是家畜肌纤维遗传改良工作的重点。
中图分类号:
冯谦洁, 文璟, 许艳丽, 乐祥鹏. 家畜肌纤维特性的调控因素及其对肉品质的影响研究进展[J]. 中国畜牧兽医, 2025, 52(3): 1057-1069.
FENG Qianjie, WEN Jing, XU Yanli, YUE Xiangpeng. Research Progress on Regulatory Factors of Muscle Fiber Characteristics and Its Effect on Meat Quality of Livestock[J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(3): 1057-1069.
[1] PEREIRA P M D C C,VICENTE A F D R B.Meat nutritional composition and nutritive role in the human diet[J].Meat Science,2013,93(3):586-592. [2] NGAPO T M,MARTIN J F,DRANSFIELD E.International preferences for pork appearance:Ⅰ.Consumer choices[J].Food Quality and Preference,2007,18(1):26-36. [3] NGAPO T M,DRANSFIELD E.British consumers preferred fatness levels in beef:Surveys from 1955,1982 and 2002[J]. Food Quality and Preference,2006,17(5):412-417. [4] KARLSSON A H,KLONT R E,FERNANDEZ X.Skeletal muscle fibres as factors for pork quality[J].Livestock Production Science,1999,60(1):255-269. [5] MATARNEH S K,SILVA S L,GERRARD D E.New insights in muscle biology that alter meat quality[J]. Annual Review of Animal Biosciences,2021,9(1):355-377. [6] BECHTEL P J.Muscle as Food[M].Orlando:Academic Press,1986. [7] BRIGITTE P,MOHAMMED G.Muscle fiber properties in cattle and their relationships with meat qualities:An overview[J].Journal of Agricultural and Food Chemistry,2020,68(22):6021-6039. [8] STROMER M H.The cytoskeleton in skeletal,cardiac and smooth muscle cells[J].Histology and Histopathology,1998,131(1):283-291. [9] CRAIG R W,PADRON R.Myology[M].New York:McGraw-Hill,2003. [10] SCHIAFFINO S,REGGIANI C.Molecular diversity of myofibrillar proteins:Gene regulation and functional significance[J]. Physiological Reviews,1996,76(2):371-423. [11] BOTTINELLIA R,REGGIANI C.Human skeletal muscle fibres:Molecular and functional diversity[J]. Progress in Biophysics and Molecular Biology,2000,73(2):195-262. [12] HARRIDGE S D,BOTTINELLI R,CANEPARI M,et al.Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans[J].European Journal of Physiology,1996,432(5):913-920. [13] PICARD B,DURIS M P,JURIE C.Classification of bovine muscle fibres by different histochemical techniques[J]. Histochemical Journal,1998,30(7),473-479. [14] DUBOWITZ V,EVERSON PEARSE A G.A comparative histochemical study of oxidative enzyme and phosphoraylase activity in skeletal muscle[J].Histochemie,1960,2(2):105-117. [15] ENGEL W K.The essentiality of histo-and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease[J].Neurology,1962,51(3):778-794. [16] GUTH L,FREDERICK J S.Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle[J].Experimental Neurology,1969,25(1):138-152. [17] BROOKE M H,KAISER K K.Muscle fiber types:How many and what kind?[J].Archives of Neurology,1970,23(4):369-379. [18] LEFAUCHEUR L,DIVIDICH L J,MOUROT J,et al.Influence of environmental temperature on growth,muscle and adipose tissue metabolism,and meat quality in swine[J].Journal of Animal Science,1991,69(7):2844-2854. [19] STARON R S,PETTE D.The continuum of pure and hybrid myosin heavy chain-based fibre types in rat skeletal muscle[J].Histochemistry,1993,100(2):149-153. [20] ASHMORE C R,DOERR L.Comparative aspects of muscle fibre types in different species[J].Experimental Neurology,1971,31(3):408-418. [21] PETER J B,BARNARD R J,EDGERTON V R,et al.Metabolic profiles of three fibre types of skeletal muscle in guinea pigs and rabbits[J].Biochemistry,1972,11(14):2627-2633. [22] ARIANO M A,AMSTRONG R B,EDGERTON V R.Hindlimb muscle fibre populations of five mammals[J].Journal of Histochemistry and Cytochemistry,1973,21(1):51-55. [23] SCHIAFFINO S,GORZA L,SARTORE S,et al.Three myosin heavy chain isoforms in type 2 skeletal muscle fibres[J]. Journal of Muscle Research and Cell Motility,1989,10(3):197-205. [24] ZOGBY A M,DAYANIDHI S,CHAMBERS H G,et al.Skeletal muscle fiber-type specific succinate dehydrogenase activity in cerebral palsy[J]. Muscle and Nerve,2016,55(1):122-124. [25] KIM G D,RYU Y C,CHEORUN J,et al.The characteristics of myosin heavy chain-based fiber types in porcine longissimus dorsi muscle[J].Meat Science,2014,96(2):712-718. [26] GRAZIOTTI G H,RÍOSC M,RIVERO J L.Evidence for three fast myosin heavy chain isoform in typeⅠ skeletal muscle fibers in the adult llama (Lama glama)[J].Journal of Histochemistry and Cytochemistry,2001,49(8):1033-1044. [27] HABETS P E,FRANCO D,RUIJTER J M,et al.RNA content differs in slow and fast muscle fibers:implications for interpretation of changes in muscle gene expression[J].Journal of Histochemistry and Cytochemistry,1999,47(8):995-1004. [28] HELEN D K,MCDERMOTT J C.Transforming growth factor-β and myostatin signaling in skeletal muscle[J].Journal of Applied Physiology,2008,104(3):579-587. [29] GROS J,SCAAL M,MARCELLE C.A two-step mechanism for myotome formation in chick[J].Developmental Cell,2004,6(6):875-882. [30] COSSU G,BIRESSI S.Satellite cells,myoblasts and other occasional myogenic progenitors:Possible origin,phenotypic features and role in muscle regeneration[J].Seminars in Cell and Developmental Biology,2005,16(4):623-631. [31] POWNALL M E,GUSTAFSSON M K,EMERSON C P.Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos[J].Annual Review of Cell and Developmental Biology,2002,18(1):747-783. [32] KHAN J,BITTNER M L,SAAL L H,et al.cDNA microarrays detect activation of a myogenic transcription program by the Pax3-FKHR fusion oncogene[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(23):13264-13269. [33] HALEVY O,PIESTUN Y,ALLOUH M Z,et al.Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal[J].Developmental Dynamics,2004,231(3):489-502. [34] KUANG S H,CHARGE S B,SEALE P,et al.Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J].Journal of Cell Biology,2006,172(1):103-113. [35] ANTOINE D M,JULIAN D K,QIANG G,et al.Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function[J]. Science,2019,366(6466):734-738. [36] SEO B R,CHEN X Y,LING L,et al.Collagen microarchitecture mechanically controls myofibroblast differentiation[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11387-11398. [37] JESSE R D,SIDDARTH S,YUE F,et al.Topological domains in mammalian genomes identified by analysis of chromatin interactions[J].Nature,2012,485(7398):376-380. [38] WANG R T,CHEN F L,CHEN Q,et al.MyoD is a 3D genome structure organizer for muscle cell identity[J].Nature Communications,2022,13(1):205. [39] JOSEPH K,JOHN K,DAVID L,et al.Meat Processing[M].Cambridge:Woodhead Publishing,2002. [40] RYU Y C,KIM B C.The relationship between muscle fiber characteristics,postmortem metabolic rate,and meat quality of pig longissimus dorsi muscle[J].Meat Science,2005,71(2):351-357. [41] FERNANDEZ X,SANTÉ V,BAEZA E,et al.Effects of the rate of muscle post mortem pH fall on the technological quality of turkey meat[J].British Poultry Science,2002,43(2):245-252. [42] ENGLAND E M,MATARNEH S K,OLIVER E M,et al.Excess glycogen does not resolve high ultimate pH of oxidative muscle[J].Meat Science,2016,114(1):95-102. [43] SULAIMAN K M,ERIC M E,TRACY L S,et al.A mitochondrial protein increases glycolytic flux[J].Meat Science,2017,133(1):119-125. [44] SULAIMAN K M,YEN C N,JENNIFER M E,et al.Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle[J].Poultry Science,2018,5(1):1808-1817. [45] ENGLAND E M,MATARNEH S K,SCHEFFLER T L,et al.Altered AMP deaminase activity may extend postmortem glycolysis[J].Meat Science,2015,102(1):8-14. [46] MATARNEH S K,ENGLAND E M,SCHEFFLER T L,et al.The Conversion of Muscle to Meat[M]. Sawston Cambridge:Woodhead Publishing,2017. [47] ZHENG A,RAHKILA P,VUORI J,et al.Quantification of carbonic anhydrase Ⅲ and myoglobin in different fiber types of human psoas muscle[J].Histochemistry,1992,97(1):77-81. [48] LARZUL C,LEFAUCHEUR L,ECOLAN P,et al.Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth,carcass,and meat quality traits in large white pigs[J]. Journal of Animal Science,1997,75(12):3126. [49] HUGHESAB J,CLARKEB F,LI Y,et al.Differences in light scattering between pale and dark beef longissimus thoracis muscles are primarily caused by differences in the myofilament lattice,myofibril and muscle fibre transverse spacings[J]. Meat Science,2019,149(1):96-106. [50] IRVING T C,SWATLAND H J,MILLMAN B M,et al.X-ray diffraction measurements of myofilament lattice spacing and optical measurements of reflectance and sarcomere length in commercial pork loins[J].Journal of Animal Science,1989,67(1):152-156. [51] WEGLARZ A.Meat quality defined based on pH and colour depending on cattle category and slaughter season[J].Czech Journal of Animal Science,2011,55(1):548-556. [52] KIM Y H B,STUART A,BLACK C,et al.Effect of lamb age and retail packaging types on the quality of long-term chilled lamb loins[J].Meat Science,2012,90(4):962-966. [53] WEGNER J,ALBRECHT E,FIEDLER I,et al.Growth-and breed-related changes of muscle fiber characteristics in cattle[J].Journal of Animal Science,2000,78(6):1485-1496. [54] 唐士杰.天华肉羊新类群四世代羊生长和肉用性能的研究[D].兰州:兰州大学,2023. TANG S J.Research on the growth and meat performances of the fourth generation sheep of Tianhua mutton sheep new population[D].Lanzhou:Lanzhou University,2023.(in Chinese) [55] FELÍCIO A M,GAYA L G,FERRAZ J B S,et al.Heritability and genetic correlation estimates for performance,meat quality and quantitative skeletal muscle fiber traits in broiler[J].Livestock Science,2013,157(1):81-87. [56] HAMILL R M,MCBRYAN J,MCGEE C,et al.Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork[J].Meat Science,2012,92(4):440-450. [57] NISHIMURA T.Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat[J]. Meat Science,2015,109(1):48-55. [58] DUBOST A,MICOL D,PICARD B,et al.Structural and biochemical characteristics of bovine intramuscular connective tissue and beef quality[J].Meat Science,2013,95(3):555-561. [59] NGAPO T M,BERGE P,CULIOLI J,et al.Perimysial collagen crosslinking in Belgian Blue double-muscled cattle[J].Food Chemistry,2002,77(1):15-26. [60] BAILEY A J,LIGHT N D.Connective Tissue in Meat and Meat Products[M].London:Elsevier Applied Science,1989. [61] SIFRE L,BERGE P,ENGEL E,et al.Influence of the spatial organization of the perimysium on beef tenderness[J]. Journal of Agricultural and Food Chemistry,2005,53(21):8390-8399. [62] BROOKS J C,SAVELL J W.Perimysium thickness as an indicator of beef tenderness[J].Meat Science,2004,67(2):329-334. [63] FANG S H,NISHIMURA T,TAKAHASHI K.Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs[J].Journal of Animal Science,1999,77(1):120-130. [64] MALTIN C A,SINCLAIR K D,WARRISS P D,et al.The effects of age at slaughter,genotype and finishing system on the biochemical properties,muscle fibre type characteristics and eating quality of bull beef from suckled calves[J].Animal Science,1998,66(2):341-348. [65] MALTIN C A,WARKUP C C,MATTHEWS K R,et al.Pig muscle fibre characteristics as a source of variation in eating quality[J]. Meat Science,1997,47(3-4):237-248. [66] VALIN C,TOURAILLE C,VIGNERON P,et al.Prediction of lamb meat quality traits based on muscle biopsy fibre typing[J]. Meat Science,1982,6(4):257-263. [67] HWANG Y H,ISMAIL I,JOO S T.The relationship between muscle fiber composition and pork taste-traits assessed by electronic tongue system[J]. Korean Journal for Food Science of Animal Resources,2018,38(6):1305-1314. [68] ZHANG L,GUO Y,WANG L,et al.Genomic variants associated with the number and diameter of muscle fibers in pigs as revealed by a genome-wide association study[J].Animal,2020,14(3):475-481. [69] NII M,HAYASHI T,MIKAWA S,et al.Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar×Large White intercross[J].Journal of Animal Science,2005,83(2):308-315. [70] BIGARD A X,SANCHEZ H,ZOLL J,et al.Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype[J].Journal of Biological Chemistry,2000,275(26):19653-19660. [71] DUNN S E,BURNS J L,MICHEL R N,et al.Calcineurin is required for skeletal muscle hypertrophy[J].Journal of Biological Chemistry,1999,274(31):21908-21912. [72] SERRANO A L,MURGIA M,PALLAFACCHINA G,et al.Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(23):13108-13113. [73] ULRIKE D,JOLANA T,HAE W L,et al.A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression[J].Journal of Molecular Cell Biology,2000,20(17):6600-6611. [74] ALLEN D L,LEINWAND L A.Intracellular calcium and myosin isoform transitions.Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the Ⅱa myosin heavy chain promoter[J].Journal of Biological Chemistry,2000,277(47):45323-45330. [75] DA COSTA N,EDGAR J,OOI P T,et al.Calcineurin differentially regulates genes in oxidative muscle fibre type fast myosin heavy chain conversion[J].Cell and Tissue Research,2007,329(3):515-527. [76] TALMADGE R J,OTIS J S,RITTLER M R,et al.Calcineurin activation influences muscle phenotype in a muscle-specific fashion[J].BMC Cell Biology,2004,5:28. [77] MCKINSEY T A,ZHANG C L,OLSON E N.MEF2:A calcium-dependent regulator of cell division,differentiation and death[J].Trends in Biochemical Sciences,2002,27(1):40-47. [78] FLVCK M,WAXHAM M N,HAMILTON M T,et al.Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running[J]. Journal of Applied Physiology,2000,88(1):352-358. [79] KAO H Y,VERDEL A,TSAI C C,et al.Mechanism for nucleocytoplasmic shuttling of histone deacetylase[J].Journal of Biological Chemistry,2001,276(50):47496-47507. [80] GROZINGER C M,SCHREIBER S L.Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(14):7835-7840. [81] MCKINSEY T A,ZHANG C L,LU J,et al.Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation[J]. Nature,2000,408(6808):106-111. [82] MEISSNER J D,CHANG K C,KUBIS H P,et al.The p38 alpha/beta mitogen-activated protein kinases mediate recruitment of CREB-binding protein to preserve fast myosin heavy chain Ⅱd/x gene activity in myotube[J].Journal of Biological Chemistry,2007,282(10):7265-7275. [83] SHI H,SCHEFFLER J M,PLEITNER J M,et al.Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling[J].FASEB Journal,2008,22(8):2990-3000. [84] VAN GINNEKEN M M E,KEIZER H A,WIJNBERG I D,et al.Immunohistochemical identification and fiber type specific localization of protein kinase C isoforms in equine skeletal muscle[J].American Journal of Veterinary Research,2004,65(1):69-73. [85] DIMARIO J X,FUNK P E.Protein kinase C activity regulates slow myosin heavy chain 2 gene expression in slow lineage skeletal muscle fibers[J].Developmental Dynamics,1999,216(2):177-189. [86] DIMARIO J X.Protein kinase C signaling controls skeletal muscle fiber types[J].Experimental Cell Research,2001,263(1):23-32. [87] JORDAN T,LI J Y,JIANG H B,et al.Repression of slow myosin heavy chain 2 gene expression in fast skeletal muscle fibers by muscarinic acetylcholine receptor and G (alpha) q signaling[J].Journal of Cell Biology,2003,162(5):843-850. [88] ELLWANGER K,KIENZLE C,LUTZ S,et al.Protein kinase D controls voluntary-running-induced skeletal muscle remodeling[J].Biochemical Journal,2011,440(3):327-334. [89] BENTZINGER C F,ROMANINO K,CLOETTA D,et al.Skeletal muscle-specific ablation of raptor,but not of rictor,causes metabolic changes and results in muscle dystrophy[J].Cell Metabolism,2008,8(5):411-424. [90] LIN J,WU H,TARR P T,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J].Nature,2002,418(6899):797-801. [91] HANDSCHIN C,CHIN S,LI P,et al.Skeletal muscle fiber-type switching,exercise intolerance,and myopathy in PGC-1 alpha muscle-specific knock-out animals[J]. Journal of Biological Chemistry,2007,282(41):30014-30021. [92] DENG B,ZHANG F,WEN J,et al.The function of myostatin in the regulation of fat mass in mammals[J]. Nutrition and Metabolism,2017,14:29. [93] RODRIGUEZ J,VERNUS B,CHELH I,et al.Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways[J].Cellular and Molecular Life Sciences,2014,71(22):4361-4371. [94] STAVAUX D,ART T,MCENTEE K,et al.Muscle fibre type and size,and muscle capillary density in young double-muscled blue Belgian cattle[J].Zentralbl Veterinarmed A,1994,41(1):229-236. [95] WANG M,YU H,KIM Y S,et al.Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation[J].Biochemical and Biophysical Research Communications,2012,426(1):83-88. [96] MCPHERRON A C,LEE S J.Double muscling in cattle due to mutations in the myostatin gene[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(23):12457-12461. [97] FIEMS L O.Double muscling in cattle:Genes,husbandry,carcasses and meat[J].Animals,2012,2(3):472-506. [98] KURODA K,KUANG S H,TAKETO M M,et al.Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts[J].Skeletal Muscle,2013,3(1):5. [99] STEELMAN C A,RECKNOR J C,Nettleton D,et al.Transcriptional profiling of myostatin-knockout MIC implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy[J]. FASEB Journal,2006,20(1):580. [100] DEPREUX F F S,GRANT A L,GERRARD D E.Influence of halothane genotype and body-weight on myosin heavy chain composition in pig muscle as related to meat quality[J].Livestock Production Science,2002,73(2):265-273. [101] FUJII N,HAYASHI T,HIRSHMAN M F,et al.Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle[J].Biochemical and Biophysical Research Communications,2000,273(3):1150-1155. [102] GUASCONI V,PURI P L.Chromatin:The interface between extrinsic cues and the epigenetic regulation of muscle regeneration[J].Trends in Cell Biology,2009,19(6):286-294. [103] TAYLOR S M,JONES P A.Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine[J].Cell,1979,17(4):771-779. [104] PANDORF C E,HADDAD F,QIN A X,et al.ⅡX myosin heavy chain promoter regulation cannot be characterized in vivo by direct gene transfer[J]. American Journal of Physiology-Cell Physiology,2007,293(4):1338-1346. [105] PANDORF C E,HADDAD F,WRIGHT C,et al.Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading[J].American Journal of Physiology-Cell Physiology,2009,297(1):6-16. [106] LIU N,BEZPROZVANNAYA S,SHELTON J M,et al.Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy[J].Journal of Clinical Investigation,2011,121(8):3258-3268. [107] ROOIJ E,QUIAT D,JOHNSON B A,et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J].Developmental Cell,2009,17(5):662-673. [108] JIANG A,YIN D,ZHANG L,et al.Parsing the microRNA genetics basis regulating skeletal muscle fiber types and meat quality traits in pigs[J].Animal Genetics,2021,52(3):292-303. [109] LIU Y F,ZHANG M,SHAN Y J,et al.miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome[J].Scientific Reports,2020,10(1):10619. [110] LI R Y,LI B J,JIANG A W,et al.Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J].Genes,2020,11(8):883. |
[1] | 张瑶, 朱礼阳, 杨莹, 侯静严, 韩涛泽, 王凯龙, 徐垭烯, 盛熙晖. 畜禽肌肉肌苷酸研究进展[J]. 中国畜牧兽医, 2025, 52(2): 686-697. |
[2] | 梁金鑫, 苑志宇, 罗新惠, 陈耿, 吴毓瑾, 王春昕. 家畜高通量体尺测量及体重预估技术研究进展[J]. 中国畜牧兽医, 2025, 52(2): 749-758. |
[3] | 许世恒, 范文鹏, 阮俞乔, 祖丽比娜·艾尼瓦尔, 马晓翠, 罗琦雨, 徐同翔, 王彩蝶. 褪黑素对羊肉抗氧化、肉品质及货架期的影响[J]. 中国畜牧兽医, 2025, 52(1): 147-157. |
[4] | 李奇隆, 史寒婧, 陈思思, 许君菲, 周文越, 龚赛斌, 罗杰, 杨飞来, 李凤娜, 郭秋平. 饲粮中添加发酵香菇渣对育肥猪生长性能、肉品质和风味物质的影响[J]. 中国畜牧兽医, 2025, 52(1): 182-194. |
[5] | 戴思凡, 张瑞云, 王梓蓓, 志莉, 赵敏霖, 朱胜全, 姚新荣, 刘艺端, 王莉兴, 亐开兴, 吴东旺, 毛华明, 李清. 不同饲养方式、去势对短角牛育肥、屠宰性能和肉品质的影响[J]. 中国畜牧兽医, 2024, 51(9): 3817-3827. |
[6] | 马桢, 叶治兵, 崔繁荣, 闫向民, 王骁, 陈文中, 苏楠, 李豪杰. 不同世代肉用褐牛生长性能与屠宰性能比较及部位肉品质差异研究[J]. 中国畜牧兽医, 2024, 51(9): 3878-3891. |
[7] | 娄新建, 马万浩, 郝力壮, 刘书杰, 马世科, 拜彬强. 牦牛肉品质研究进展[J]. 中国畜牧兽医, 2024, 51(8): 3394-3409. |
[8] | 贠红梅, 赵鑫宇, 赵晓磊, 赵燕, 杨阳, 牛瑾, 郭晓红, 李步高, 曹果清. 饲粮粗纤维水平对猪生长性能、胴体性状及肉品质的影响[J]. 中国畜牧兽医, 2024, 51(7): 2787-2798. |
[9] | 李昊轩, 王铮, 秦士贞, 张博, 李晶, 索琰瑞, 赵东栋, 汪阳阳, 刘文丽, 申莉, 孙鸿, 史兆国, 邵玉新. 种鸽饲粮锰水平对种鸽蛋品质及乳鸽屠宰性能、肉质性状和抗氧化性能的影响[J]. 中国畜牧兽医, 2024, 51(7): 2837-2848. |
[10] | 莫显红, 李俊杰, 郭成, 温诏禹, 邹宇柱, 赵文博, 徐振军. 家畜卵母细胞玻璃化冷冻损伤研究进展[J]. 中国畜牧兽医, 2024, 51(6): 2524-2532. |
[11] | 叶金玲, 范秋丽, 王一冰, 林厦菁, 阮栋, 罗琦丽, 苟钟勇, 蒋守群. 磷脂与大豆异黄酮对黄羽肉鸡生长性能、肉品质及抗氧化功能的影响[J]. 中国畜牧兽医, 2024, 51(5): 1857-1867. |
[12] | 谢兵红, 单艳菊, 范晨宇, 薛夫光, 吴红翔, 巨晓军, 束婧婷, 刘一帆. 家禽骨骼肌肌纤维类型影响因素及其转化的研究进展[J]. 中国畜牧兽医, 2024, 51(4): 1561-1572. |
[13] | 黄永棚, 冉雪琴, 牛熙, 李升, 黄世会, 王嘉福. 宰后猪肉成熟过程中基因表达变化及其与肉品质的相关性分析[J]. 中国畜牧兽医, 2024, 51(4): 1573-1581. |
[14] | 索朗多吉, 张群英, 张强, 平措占堆, 巴多, 巴桑旺堆, 龙瑞军, 洛桑顿珠. 西藏阿里地区改则县野血牦牛屠宰性能及其肉品质特性研究[J]. 中国畜牧兽医, 2024, 51(4): 1603-1612. |
[15] | 苏艳芳, 牛乃琪, 宗文成, 刘先策, 刘海, 石国华, 井西涛, 张龙超. 北京黑猪LPL和NUDT3基因多态性及其与肉质性状的关联分析[J]. 中国畜牧兽医, 2024, 51(3): 1111-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||