中国畜牧兽医 ›› 2024, Vol. 51 ›› Issue (11): 4880-4889.doi: 10.16431/j.cnki.1671-7236.2024.11.023
• 遗传繁育 • 上一篇
潘东霞, 王辉, 熊本海, 唐湘方
收稿日期:
2024-03-05
发布日期:
2024-10-31
通讯作者:
唐湘方
E-mail:xiangfangtang@163.com
作者简介:
潘东霞,E-mail:pandongxia1117@163.com。
基金资助:
PAN Dongxia, WANG Hui, XIONG Benhai, TANG Xiangfang
Received:
2024-03-05
Published:
2024-10-31
摘要: 近年来,基因编辑技术作为一种基因组修饰工具迅速发展,包括锌指核酸酶(zinc-finger nucleases,ZFNs)、转录激活因子样效应物核酸酶(transcription activator-like effector nucleases,TALENs)和成簇规则间隔短回文重复序列相关蛋白(clustered regularly interspaced short palindromic repeats associated protein,CRISPR-Cas)系统在内的基因编辑工具使生物体的基因组DNA靶向修饰成为可能,尤其是CRISPR-Cas9系统的出现,加速了基因编辑技术的发展,成为基础科学和应用科学中的革命性工具。与ZFNs和TALENs技术相比,CRISPR-Cas9系统因其高灵活性、灵敏度、特异性和成本效益而被广泛使用。CRISPR-Cas9基因编辑技术通过靶向特定序列精确地切割DNA,并通过在特定基因组位点产生双链断裂来添加、去除或替换核苷酸等方式在位点引入特异性修饰对畜牧生产的不同方面做出了重大贡献,产生了改善牲畜生产和具有抗病性等多种动物模型,以研究畜禽关键基因功能,加速性状改良。作者主要阐述了CRISPR-Cas9系统的机制与功能及其在牛、羊生产中的应用进展,以期为今后的相关研究提供参考。
中图分类号:
潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas9基因编辑技术在牛、羊生产中的应用研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4880-4889.
PAN Dongxia, WANG Hui, XIONG Benhai, TANG Xiangfang. Research Progress on CRISPR-Cas9 Gene Editing Technology in Cattle and Sheep Production[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(11): 4880-4889.
[1] HUANG S,YAN Y,SU F,et al.Research progress in gene editing technology [J]. Frontiers in Bioscience (Landmark edition),2021,26(10):916-927. [2] ZHU Y.Advances in CRISPR/Cas9 [J]. BioMed Research International,2022,2022:9978571. [3] LI H,YANG Y,HONG W,et al.Applications of genome editing technology in the targeted therapy of human diseases:Mechanisms,advances and prospects [J].Signal Transduction and Targeted Therapy,2020,5(1):1. [4] O’BRIEN A R,WILSON L O W,BURGIO G,et al.Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning [J].Scientific Reports,2019,9(1):2788. [5] RANAWAKAGE D C,OKADA K,SUGIO K,et al.Efficient CRISPR-Cas9-mediated knock-in of composite Tags in zebrafish using long ssDNA as a donor [J].Frontiers in Cell and Developmental Biology,2021,8:598634. [6] BISCHOFF N,WIMBERGER S,MARESCA M,et al.Improving precise CRISPR genome editing by small molecules:Is there a magic potion? [J]. Cells,2020,9(5):1318. [7] ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the Iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product [J].Journal of Bacteriology,1987,169(12):5429-5433. [8] CHARLESWORTH C T,DESHPANDE P S,DEVER D P,et al.Identification of preexisting adaptive immunity to Cas9 proteins in humans [J]. Nature Medicine,2019,25(2):249-254. [9] TERNS M P,TERNS R M.CRISPR-based adaptive immune systems [J].Current Opinion in Microbiology,2011,14(3):321-327. [10] ZETSCHE B,GOOTENBERG J S,ABUDAYYEH O O,et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell,2015,163(3):759-771. [11] DAVIDSON A R,LU W T,STANLEY S Y,et al.Anti-CRISPRs:Protein inhibitors of CRISPR-Cas systems [J].Annual Review of Biochemistry,2020,89:309-332. [12] WANG L,MO C Y,WASSERMAN M R,et al.Dynamics of Cas10 govern discrimination between self and non-self in type Ⅲ CRISPR-Cas immunity [J].Molecular Cell,2019,73(2):278-290. [13] ADLI M.The CRISPR tool kit for genome editing and beyond [J].Nature Communications,2018,9(1):1911. [14] LEONOVA E I,GAINETDINOV R R.CRISPR/Cas9 technology in translational biomedicine [J]. Cellular Physiology and Biochemistry,2020,54(3):354-370. [15] YANG M,SUN R,DENG P,et al.Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search [J].Chemical Science,2021,12(38):12776-12784. [16] NISHIMASU H,SHI X,ISHIGURO S,et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space [J].Science,2018,361(6408):1259-1262. [17] WANG M,ZHANG R,LI J.CRISPR/Cas systems redefine nucleic acid detection:Principles and methods [J].Biosensors and Bioelectronics,2020,165:112430. [18] RICHARDSON C,KELSH R N,J RICHARDSON R.New advances in CRISPR/Cas-mediated precise gene-editing techniques [J].Disease Models & Mechanisms,2023,16(2):dmm049874. [19] CHYLINSKI K,LE RHUN A,CHARPENTIER E.The tracrRNA and Cas9 families of type Ⅱ CRISPR-Cas immunity systems [J]. RNA Biology,2013,10(5):726-737. [20] NISHIMASU H,RAN F A,HSU P D,et al.Crystal structure of Cas9 in complex with guide RNA and target DNA [J]. Cell,2014,156(5):935-949. [21] 徐 鑫,刘明军.CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展 [J].中国畜牧兽医,2022,49(11):4129-4138. XU X,LIU M J.Research progress on application of CRISPR/Cas9 genome editing systems in sheep [J].China Animal Husbandry & Veterinary Medicine,2022,49(11):4129-4138.(in Chinese) [22] MENCHACA A,DOS SANTOS-NETO P C,MULET A P,et al.CRISPR in livestock:From editing to printing [J].Theriogenology,2020,150(prepublish):247-254. [23] ZABOIKIN M,ZABOIKINA T,FRETER C,et al.Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents [J].PLoS One,2017,12(1):e0169931. [24] CHANG H H Y,PANNUNZIO N R,ADACHI N,et al.Non-homologous DNA end joining and alternative pathways to double-strand break repair[J].Nature Reviews Molecular Cell Biology,2017,18(8):495-506. [25] WANG R,ZHANG J Y,LU K H,et al.Efficient generation of GHR knockout Bama Minipig fibroblast cells using CRISPR/Cas9-mediated gene editing [J]. In Vitro Cellular & Developmental Biology Animal,2019,55(10):784-792. [26] MAKAROVA K S,WOLF Y I,IRANZO J,et al.Evolutionary classification of CRISPR-Cas systems:A burst of class 2 and derived variants [J].Nature Reviews Microbiology,2020,18(2):67-83. [27] YANG Y,WANG D,LÜ P,et al.Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system [J].Molecular Biology Reports,2023,50(4):3723-3738. [28] WANG M,WANG H,LI K,et al.Review of CRISPR/Cas systems on detection of nucleotide sequences [J].Foods,2023,12(3):477. [29] BHARDWAJ P,KANT R,BEHERA S P,et al.Next-generation diagnostic with CRISPR/Cas:Beyond nucleic acid detection [J]. International Journal of Molecular Sciences,2022,23(11):6052. [30] KARLSON C K S,MOHD-NOOR S N,NOLTE,et al.CRISPR/dCas9-based systems:Mechanisms and applications in plant sciences [J]. Plants,2021,10(10):2055. [31] DETTMER R,NAUJOK O.Design and derivation of multi-reporter pluripotent stem cell lines via CRISPR/Cas9n-mediated homology-directed repair [J]. Current Protocols in Stem Cell Biology,2020,54(1):e116. [32] MALI P,AACH J,STRANGES P B,et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering [J]. Nature Biotechnology,2013,31(9):833-838. [33] DIANOV G L,HÜBSCHER U.Mammalian base excision repair:The forgotten archangel [J]. Nucleic Acids Research,2013,41(6):3483-3490. [34] BOTHMER A,PHADKE T,BARRERA L A,et al.Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus [J]. Nature Communications,2017,8(1):13905. [35] CEBRIAN-SERRANO A,DAVIES B.CRISPR-Cas orthologues and variants:Optimizing the repertoire,specificity and delivery of genome engineering tools [J]. Mammalian Genome Official Journal of the International Mammalian Genome Society,2017,28(7-8):247-261. [36] OSBORN M J,GABRIEL R,WEBBER B R,et al.Fanconi anemia gene editing by the CRISPR/Cas9 system [J].Human Gene Therapy Clinical Development,2015,26(2):114-126. [37] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems [J].Science,2013,339(6121):819-823. [38] LEUNG R K,CHENG Q X,WU Z L,et al.CRISPR-Cas12-based nucleic acids detection systems [J].Methods,2022,203:276-281. [39] LAMAS-TORANZO I,RAMOS-IBEAS P,PERICUESTA E,et al.Directions and applications of CRISPR technology in livestock research [J].Animal Reproduction,2018,15(3):292-300. [40] 闫晓敏,李文泽,龚 高,等.CRISPR/Cas9基因编辑技术在羊育种功能基因验证中的应用研究进展 [J].黑龙江畜牧兽医,2024,1:29-35. YAN X M,LI W Z,GONG G,et al.Research progress in application of CRISPR/Cas9 gene editing technology in functional gene verification in sheep breeding[J].Heilongjiang Animal Science and Veterinary Medicine,2024,1:29-35.(in Chinese) [41] IDETA A,YAMASHITA S,SEKI-SOMA M,et al.Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle [J].Scientific Reports,2016,6(1):24983. [42] MUELLER M L,MUELLER M L,OWEN J R,et al.Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes [J]. Frontiers in Genome Editing,2023,5:1321243. [43] JERABEK S,MERINO F,SCHÖLER H R,et al.OCT4:Dynamic DNA binding pioneers stem cell pluripotency [J].Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2014,1839(3):138-154. [44] DAIGNEAULT B W,RAJPUT S,SMITH G W,et al.Embryonic POU5F1 is required for expanded bovine blastocyst formation [J].Scientific Reports,2018,8(1):7753. [45] CAMARGO L S A,OWEN J R,VAN EENENNAAM A L,et al.Efficient one-step knockout by electroporation of ribonucleoproteins into zona-intact bovine embryos [J].Frontiers in Genetics,2020,11:570069. [46] BELLI M,SHUNICHI S.Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function [J].Vitamins and Hormones,2018,107:317-348. [47] 冯万有.基于CRISPR/Cas9系统靶向敲除水牛BMP15和GDF9基因的研究[D].南宁:广西大学,2015. FENG W Y.Targeted editing buffalo BMP15 and GDF9 via CRISPR/Cas9 system[D].Nanning:Guangxi University,2015.(in Chinese) [48] ABDELGADIR A Z,MUSA L M A,JAWASREH K I,et al.G1 point mutation in growth differentiation factor 9 gene affects litter size in Sudanese desert sheep [J].Veterinary World,2021,14(1):104-112. [49] XU X,ZHANG X,PENG X,et al.Introduction of the FecGF mutation in GDF9 gene via CRISPR/Cas9 system with single-stranded oligodeoxynucleotide [J]. Theriogenology,2023,197:177-185. [50] YANG H,DENG M,LV W,et al.Overexpression of bmp4,dazl,nanos3 and sycp2 in Hu sheep leydig cells using CRISPR/dCas9 system promoted male germ cell related gene expression [J].Biology,2022,11(2):289. [51] ZHANG X,LI W,WU Y,et al.Disruption of the sheep BMPR-ⅠB gene by CRISPR/Cas9 in in vitro-produced embryos [J].Theriogenology,2017,91:163-172.e2. [52] LI X,HE S G,LI W R,et al.Genomic analyses of wild Argali,domestic sheep,and their hybrids provide insights into chromosome evolution,phenotypic variation,and germplasm innovation [J].Genome Research,2022,32(9):1669-1684. [53] EBRAHIMI V,HASHEMI A.Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions:A review [J].Genes,2020,753(prepublish):144813. [54] GAO L,WANG S,YANG M,et al.Gut fungal community composition analysis of myostatin mutant cattle prepared by CRISPR/Cas9 [J]. Frontiers in Veterinary Science,2023,9:1084945. [55] WEN T,MAO C,GAO L.Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9 [J].PLoS One,2022,17(3):e0264849. [56] ZHAO Y,YANG L,SU G,et al.Growth traits and sperm proteomics analyses of myostatin gene-edited Chinese Yellow cattle [J].Life(Basel,Switzerland),2022,12(5):627. [57] ZHOU S,KALDS P,LUO Q,et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality [J]. BMC Genomics,2022,23(1):348. [58] WANG X,NIU Y,ZHOU J,et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep [J]. Scientific Reports,2016,6(1):32271. [59] YOUNIS S,YOUNIS S,WANG X,et al.The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells [J]. FASEB Journal,2020,34(8):10250-10266. [60] ZHAO H,WU M,WU M,et al.Liver expression of IGF2 and related proteins in ZBED6 gene-edited pig by RNA-Seq [J]. Animals, 2020,10(11):2184. [61] ZOU H,YU D,YAO S,et al.Efficient editing of the ZBED6-binding site in intron 3 of IGF2 in a bovine model using the CRISPR/Cas9 system [J]. Genes,2022,13(7):1132. [62] GUO Y,WANG J,ZHU M,et al.Author correction:Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA (lncRNA-AK143003) that negatively regulates myoblast differentiation [J]. Scientific Reports,2023,13(1):1937. [63] ZHOU D,WANG Y,YANG R,et al.The MyoD1 promoted muscle differentiation and generation by activating CCND2 in guanling cattle [J].Animals,2022,12(19):2571. [64] O’NEIL C E,NICKLAS T A,FULGONI V L,3RD.Food sources of energy and nutrients of public health concern and nutrients to limit with a focus on milk and other dairy foods in children 2 to 18 years of age:National health and nutrition examination survey,2011-2014 [J]. Nutrients,2018,10(8):1050. [65] LOPES T S,FONTOURA P S,OLIVEIRA A,et al.Use of plant extracts and essential oils in the control of bovine mastitis [J]. Research in Veterinary Science,2020,131(prepublish):186-193. [66] SHEN B,ZHANG L,LIAN C,et al.Deep sequencing and screening of differentially expressed microRNAs related to milk fat metabolism in bovine primary mammary epithelial cells [J].International Journal of Molecular Sciences,2016,17(2):200. [67] CHEN X,ZHAO Z,JIANG X,et al.The complement component 4 binding protein α gene:A versatile immune gene that influences lipid metabolism in bovine mammary epithelial cell lines [J].International Journal of Molecular Sciences,2024,25(4):2375. [68] FINK T,LOPDELL T J,TIPLADY K,et al.A new mechanism for a familiar mutation-bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement [J].BMC Genomics,2020,21(1):591. [69] MOODY J,MEARS E,TREVARTON A J,et al.Successful editing and maintenance of lactogenic gene expression in primary bovine mammary epithelial cells [J].In Vitro Cellular & Developmental Biology Animal,2023,59(5):316-330. [70] HUANG L,TIAN H,LUO J,et al.CRISPR/Cas9 based knockout of miR-145 affects intracellular fatty acid metabolism by targeting INSIG1 in goat mammary epithelial cells [J]. Journal of Agricultural and Food Chemistry,2020,68(18):5138-5146. [71] EDICK A M,AUDETTE J,BURGOS S A.CRISPR-Cas9-mediated knockout of GCN2 reveals a critical role in sensing amino acid deprivation in bovine mammary epithelial cells [J].Journal of Dairy Science,2020,104(1):1123-1135. [72] SHARMA S,KUMAR P,BETZEL C et al.Structure and function of proteins involved in milk allergies [J].Journal of Chromatography B:Biomedical Sciences and Applications,2000,756(1):183-187. [73] SÉLO I,NÉGRONI L,CRÉMINON C,et al.Allergy to bovine beta-lactoglobulin:Specificity of human IgE using cyanogen bromide-derived peptides [J].International Archives of Allergy Immunology, 1998,117(1):20-28. [74] ZHOU W,WAN Y,GUO R,et al.Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9 [J]. PLoS One,2017,12(10):e0186056. [75] LI Q,WANG F,WANG Q,et al.SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response [J]. PLoS Pathogens,2020,16(5):e1008188. [76] PROUDFOOT C,LILLICO S,TAIT-BURKARD C.Genome editing for disease resistance in pigs and chickens [J]. Animal Frontiers,2019,9(3):6-12. [77] GAO Y,WU H,WANG Y,et al.Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects [J]. Genome Biology,2017,18(1):13. [78] HIRANO T,MATSUHASHI T,TAKEDA K,et al.IARS mutation causes prenatal death in Japanese Black cattle [J].Animal Science Journal, 2016,87(9):1178-1181. [79] IKEDA M,MATSUYAMA S,AKAGI S,et al.Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese Black cattle [J].Scientific Reports,2017,7(1-4):17827. [80] SASAKI S,IBI T,AKIYAMA T,et al.Loss of maternal ANNEXIN A10 via a 34-kb deleted-type copy number variation is associated with embryonic mortality in Japanese Black cattle [J]. BMC Genomics,2016,17(1):968. [81] KANG I,CHU C T,KAUFMAN B A.The mitochondrial transcription factor TFAM in neurodegeneration:Emerging evidence and mechanisms [J].FEBS Letters,2018,592(5):793-811. [82] DE OLIVEIRA V C,MOREIRA G S A,BRESSAN F F,et al.Edition of TFAM gene by CRISPR/Cas9 technology in bovine model [J]. PLoS One,2019,14(3):e0213376. [83] TOMANI AC'G D,SAMARDŽIJA M,KOVA AČG EVI AČG Z.Alternatives to antimicrobial treatment in bovine mastitis therapy:A review [J]. Antibiotics (Basel,Switzerland),2023,12(4):683. [84] WANG X,WANG H,ZHANG R,et al.LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells [J].International Journal of Biological Sciences,2020,16(2):251-263. [85] WANG H,WANG X,LI X,et al.A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis [J].The FEBS Journal,2019,286(9):1780-1795. [86] 赵 娟,徐斯日古楞,李慧萍,等.绵羊肺腺瘤病毒囊膜蛋白引起绵羊绒毛膜滋养层细胞的恶性转化 [J].畜牧兽医学报,2018,49(5):1089-1095. ZHAO J,XU S R G L,LI H P,et al.Malignant transformation of sheep trophoblast cells induced by envelope protein of Jaagsiekte sheep Retrovirus [J].Acta Veterinaria et Zootechnica Sinica,2018,49(5):1089-1095.(in Chinese) [87] Abstracts from the UC davis transgenic animal research conference Ⅺ:August 13-17,2017 [J].Transgenic Research,2018,27(5):467-487. [88] RAZA S H A,HASSANIN A A,PANT S D,et al.Potentials,prospects and applications of genome editing technologies in livestock production [J]. Saudi Journal of Biological Sciences,2022,29(4):1928-1935. [89] CHUNG S H,SIN T N,NGO T,et al.CRISPR technology for ocular angiogenesis [J].Frontiers in Genome Editing,2020,2:594984. [90] SHEN B,ZHANG W,ZHANG J,et al.Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects [J]. Nature Methods,2014,11(4):399-402. [91] KOTAGAMA O W,JAYASINGHE C D,ABEYSINGHE T.Era of genomic medicine:A narrative review on CRISPR technology as a potential therapeutic tool for human diseases [J]. BioMed Research International,2019,2019:1369682. [92] MEHRAVAR M,HACHEM A,NAZARI M,et al.Mosaicism in CRISPR/Cas9-mediated genome editing [J].Developmental Biology,2018,445(2):156-162. [93] NAVARRO-SERNA S,ALAA H,CANHA-GOUVEIA A,et al.Generation of nonmosaic,two-pore channel 2 biallelic knockout pigs in one generation by CRISPR-Cas9 microinjection before oocyte insemination [J].The CRISPR Journal,2021,4(1):132-146. [94] PERISSE I V,FAN Z,SINGINA G N,et al.Improvements in gene editing technology boost its applications in livestock [J]. Frontiers in Genetics,2021,11:614688. [95] MENCHACA A,DOS SANTOS-NETO P C,CUADRO F,et al.From reproductive technologies to genome editing in small ruminants:An embryos journey [J].Animal Reproduction,2018,15(Suppl 1):984-995. [96] ZHOU X,GU M,ZHU L,et al.Comparison of microbial community and metabolites in four stomach compartments of myostatin-gene-edited and non-edited cattle [J].Frontiers in Microbiology,2022,13:844962. |
[1] | 周芳廷. 水牛KLF15基因克隆、分子特征和组织差异表达分析[J]. 中国畜牧兽医, 2024, 51(9): 3715-3725. |
[2] | 马思佳, 赵正伟, 王锦, 马丽娜. 基于转录组数据挖掘不同日龄滩羊毛囊发育关键基因[J]. 中国畜牧兽医, 2024, 51(9): 3726-3738. |
[3] | 何瑊瑊, 高会霞, 孙晨旭, 姚海博, 谢耀弟, 于爱缓, 胡晋升, 王贺, 段月岩, 唐德富, 刘旺景. 饲粮中添加沙葱粉对安格斯牛营养物质表观消化率及血浆代谢组特征的影响[J]. 中国畜牧兽医, 2024, 51(9): 3780-3793. |
[4] | 戴思凡, 张瑞云, 王梓蓓, 志莉, 赵敏霖, 朱胜全, 姚新荣, 刘艺端, 王莉兴, 亐开兴, 吴东旺, 毛华明, 李清. 不同饲养方式、去势对短角牛育肥、屠宰性能和肉品质的影响[J]. 中国畜牧兽医, 2024, 51(9): 3817-3827. |
[5] | 马桢, 叶治兵, 崔繁荣, 闫向民, 王骁, 陈文中, 苏楠, 李豪杰. 不同世代肉用褐牛生长性能与屠宰性能比较及部位肉品质差异研究[J]. 中国畜牧兽医, 2024, 51(9): 3878-3891. |
[6] | 周光现, 谭嘉泳, 杨健, 刘艳芬, 甘尚权, 赵志辉, 康丹菊. 雷州山羊TBX15基因多态性及其与体尺性状的关联分析[J]. 中国畜牧兽医, 2024, 51(9): 3930-3938. |
[7] | 曹萍, 李瑞哲, 陈生梅, 薛斌, 韩生兰, 梅萨, 达桑, 才加, 孙永刚, 马志杰. 青海省果洛藏族自治州4个牦牛群体父系遗传分子评估[J]. 中国畜牧兽医, 2024, 51(9): 3948-3957. |
[8] | 程晶, 陈沛霖, 郭禹, 崔锦蔷, 江波, 周林宜, 刘文晓, 李焕荣, 李永清. 牛早幼粒细胞白血病蛋白的原核表达及单克隆抗体制备[J]. 中国畜牧兽医, 2024, 51(9): 4014-4024. |
[9] | 邱东旭, 吕浪, 皮向成, 冯宇, 蒋卉, 陈祥, 丁家波. 羊用布鲁氏菌病疫苗研究进展[J]. 中国畜牧兽医, 2024, 51(9): 4043-4051. |
[10] | 刘照, 董倩倩, 吴澳迪, 王凯月, 梁成哲, Adnan Ali, 盛金良. 1株进口胎牛血清源牛病毒性腹泻病毒的分离鉴定及小鼠致病性分析[J]. 中国畜牧兽医, 2024, 51(9): 4052-4059. |
[11] | 许浩天, 于月通, 李静, 马志远, 杨彬, 王泽坤, 陀海欣, 齐萌. 脂多糖与钙离子共处理的牛乳腺上皮细胞miRNA表达谱的比较分析[J]. 中国畜牧兽医, 2024, 51(9): 4066-4079. |
[12] | 赵清梅, 崔省委, 郭仕辉, 余永涛, 梁泰宇, 李欢语. 腹泻犊牛粪便菌群及粪便代谢物的变化特征分析[J]. 中国畜牧兽医, 2024, 51(9): 4092-4105. |
[13] | 王文凯, 隋洁, 许怡静, 陶麒元, 茹彩霞, 魏泽辉, 辛亚平, 巴桑珠扎, 贾存灵. 奶牛场厌氧发酵牛粪生产垫料工艺中菌群变化的研究[J]. 中国畜牧兽医, 2024, 51(9): 4182-4189. |
[14] | 李晋男, 王亚慧, 邓天宇, 梁忙, 杜丽丽, 李柯安宁, 薛青青, 骞里, 高雪, 张路培, 朱波, 陈燕, 王泽昭, 李俊雅, 高会江. 牛MED28基因编码区克隆、生物信息学分析及组织表达谱研究[J]. 中国畜牧兽医, 2024, 51(8): 3225-3236. |
[15] | 于晶雪, 韦珊珊, 覃绍敏, 吴健敏, 杨丽华, 陈凤莲, 许力士, 秦树英, 华俊, 韦珏, 方芳, 刘金凤. 基于CRISPR/Cas12a-RT-RAA的猪繁殖与呼吸综合征病毒快速检测方法的建立[J]. 中国畜牧兽医, 2024, 51(8): 3237-3246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||