China Animal Husbandry and Veterinary Medicine ›› 2022, Vol. 49 ›› Issue (8): 3190-3199.doi: 10.16431/j.cnki.1671-7236.2022.08.035
• Preventive Veterinary Medicine • Previous Articles Next Articles
ZHANG Qingxun1,2, ZHONG Zhenyu1,2, GUO Qingyun1,2, HE Hongxuan3, BAI Jiade1,2
Received:
2022-01-05
Online:
2022-08-05
Published:
2022-07-21
CLC Number:
ZHANG Qingxun, ZHONG Zhenyu, GUO Qingyun, HE Hongxuan, BAI Jiade. Recent Advances of Pathogens Detection Based on CRISPR-Cas System[J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3190-3199.
[1] YIN L,MAN S,YE S,et al.CRISPR-Cas based virus detection:Recent advances and perspectives[J].Biosensors and Bioelectronics,2021,193:113541. [2] PENRITH M L,VOSLOO W.Review of African swine fever:Transmission,spread and control[J].Journal of the South African Veterinary Association,2009,80:58-62. [3] NIEMZ A,FERGUSON T M,BOYLE D S.Point-of-care nucleic acid testing for infectious diseases[J]. Trends in Biotechnology,2011,29(5):240-250. [4] AMAN R,MAHAS A,MAHFOUZ M.Nucleic acid detection using CRISPR/Cas biosensing technologies[J].ACS Synthetic Biology,2020,9(6):1226-1233. [5] BYRNE B,STACK E,GILMARTIN N,et al.Antibody-based sensors:Principles,problems and potential for detection of pathogens and associated toxins[J].Sensors,2009,9(6):4407-4445. [6] HUANG H S,TSAI C L,CHANG J,et al.Multiplex PCR system for the rapid diagnosis of Respiratory virus infection:Systematic review and meta-analysis[J].Clinical Microbiology and Infection,2018,24(10):1055-1063. [7] CHUNG H Y,JIAN M J,CHANG C K,et al.Novel dual multiplex real-time RT-PCR assays for the rapid detection of SARS-CoV-2,Influenza A/B,and Respiratory syncytial virus using the BD MAX open system[J].Emerging Microbes Infections,2021,10(1):161-166. [8] BLAUWKAMP T A,THAIR S,ROSEN M J,et al.Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease[J].Nature Microbiology,2019,4(4):663-674. [9] KOSTYUSHEVA A,BREZGIN S,BABIN Y,et al.CRISPR-Cas systems for diagnosing infectious diseases[J].Methods,2021,203:431-446. [10] JOUNG J,LADHA A,SAITO M,et al.Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J].New England Journal of Medicine,2020,383(15):1492-1494. [11] BROUGHTON J P,DENG X,YU G,et al.CRISPR-Cas12-based detection of SARS-CoV-2[J].Nature Biotechnology,2020,38(7):870-874. [12] WIEDENHEFT B,STERNBERG S H,DOUDNA J A.RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7385):331-338. [13] MAKAROVA K S,WOLF Y I,IRANZO J,et al.Evolutionary classification of CRISPR-Cas systems:A burst of class 2 and derived variants[J].Nature Reviews Microbiology,2020,18(2):67-83. [14] MAKAROVA K S,ZHANG F,KOONIN E V.SnapShot:Class 2 CRISPR-Cas systems[J].Cell,2017,168(1-2):328. [15] WU Y,BATTALAPALLI D,HAKEEM M J,et al.Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections[J].Journal of Nanobiotechnology,2021,19(1):401. [16] KNOTT G J,DOUDNA J A.CRISPR-Cas guides the future of genetic engineering[J]. Science,2018,361(6405):866-869. [17] ZETSCHE B,GOOTENBERG J S,ABUDAYYEH O O,et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J].Cell,2015,163(3):759-771. [18] ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573. [19] HARRINGTON L B,BURSTEIN D,CHEN J S,et al.Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J].Science,2018,362(6416):839-842. [20] SERAJIAN S,AHMADPOUR E,OLIVEIRA S M R,et al.CRISPR-Cas technology:Emerging applications in clinical microbiology and infectious diseases[J].Pharmaceuticals,2021,14(11):1171. [21] TENG F,GUO L,CUI T,et al.CDetection:CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J].Genome Biology,2019,20(1):132. [22] XIONG Y,ZHANG J,YANG Z,et al.Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets[J].Journal of the American Chemical Society,2020,142(1):207-213. [23] PARDEE K,GREEN A A,TAKAHASHI M K,et al.Rapid,low-cost detection of Zika virus using programmable biomolecular components[J].Cell,2016,165(5):1255-1266. [24] ZHANG B,WANG Q,XU X,et al.Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique[J].Analytical and Bioanalytical Chemistry,2018,410(12):2889-2900. [25] BARBER K W,SHROCK E,ELLEDGE S J.CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays[J].Molecular Cell,2021,81(17):3650-3658. [26] GOOTENBERG J S,ABUDAYYEH O O,LEE J W,et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science,2017,356(6336):438-442. [27] GOOTENBERG J S,ABUDAYYEH O O,KELLNER M J,et al.Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J].Science,2018,360(6387):439-444. [28] MYHRVOLD C,FREIJE C A,GOOTENBERG J S,et al.Field-deployable viral diagnostics using CRISPR-Cas13[J].Science,2018,360(6387):444-448. [29] BARNES K G,LACHENAUER A E,NITIDO A,et al.Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time[J].Nature Communications,2020,11(1):4131. [30] HOU T,ZENG W,YANG M,et al.Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19[J].PLoS Pathogens,2020,16(8):e1008705. [31] WU Y,LIU S X,WANG F,et al.Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13[J]. Clinical Chemistry,2019,65(4):591-592. [32] WANG S,LI H,KOU Z,et al.Highly sensitive and specific detection of Hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system[J].Clinical Microbiology and Infection,2021,27(3):443-450. [33] KAMINSKI M M,ALCANTAR M A,LAPE I T,et al.A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection[J].Nature Biomedical Engineering,2020,4(6):601-609. [34] LIU Y,XU H,LIU C,et al.CRISPR-Cas13a nanomachine based simple technology for Avian influenza A (H7N9) virus on-site detection[J].Journal of Biomedical Nanotechnology,2019,15(4):790-798. [35] CHANG Y,DENG Y,LI T,et al.Visual detection of Porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J].Transboundary and Emerging Diseases,2020,67(2):564-571. [36] SULLIVAN T J,DHAR A K,CRUZ-FLORES R,et al.Rapid,CRISPR-based,field-deployable detection of White spot syndrome virus in shrimp[J].Scientific Reports,2019,9(1):19702. [37] KHAN H,KHAN A,LIU Y,et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of Canine parvovirus type 2[J].Chinese Chemical Letters,2019,30(12):2201-2204. [38] CHEN J S,MA E,HARRINGTON L B,et al.CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J].Science,2018,360(6387):436-439. [39] LI S Y,CHENG Q X,WANG J M,et al.CRISPR-Cas12a-assisted nucleic acid detection[J].Cell Discovery,2018,4:20. [40] LI L,LI S,WU N,et al.HOLMESv2:A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J].ACS Synthetic Biology,2019,8(10):2228-2237. [41] HUANG Z,TIAN D,LIU Y,et al.Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis[J].Biosensors and Bioelectronics,2020,164:112316. [42] WANG Y,LIU D,LIN H,et al.Development of a broadly applicable Cas12a-linked beam unlocking reaction for sensitive and specific detection of respiratory pathogens including SARS-CoV-2[J].ACS Chemical Biology,2021,16(3):491-500. [43] GUO L,SUN X,WANG X,et al.SARS-CoV-2 detection with CRISPR diagnostics[J].Cell Discovery,2020,6:34. [44] TAO D,LIU J,NIE X,et al.Application of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African swine fever virus[J].ACS Synthetic Biology,2020,9(9):2339-2350. [45] YANG B,SHI Z W,MA Y,et al.LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus[J].Transboundary and Emerging Diseases,2021.doi:10.1111/tbed.14285. [46] XU W,JIN T,DAI Y,et al.Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR-Cas systems[J].Biosensors and Bioelectronics,2020,155:112100. [47] WANG X,XIONG E,TIAN T,et al.Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J].ACS Nano,2020,14(2):2497-2508. [48] WANG L,SHEN X,WANG T,et al.A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection[J].Biosensors and Bioelectronics,2020,165:112364. [49] LI F,YE Q,CHEN M,et al.An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection[J].Biosensors and Bioelectronics,2021,179:113073. [50] WANG Y,KE Y,LIU W,et al. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level[J].ACS Sensors,2020,5(5):1427-1435. [51] AI J W,ZHOU X,XU T,et al.CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis[J].Emerging Microbes Infections,2019,8(1):1361-1369. [52] SAM I K,CHEN Y,MA J,et al.TB-QUICK:CRISPR-Cas12b-assisted rapid and sensitive detection of Mycobacterium tuberculosis[J].The Journal of Infection,2021,83(1):54-60. [53] ZHANG M,LIU C,SHI Y,et al.Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application[J]. Talanta,2020,214:120818. [54] MUKAMA O,WU J,LI Z,et al.An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J].Biosensors and Bioelectronics,2020,159:112143. [55] XIAO X,LIN Z,HUANG X,et al.Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay[J]. Frontiers in Microbiology,2021,12:767315. [56] HUANG Y,GU D,XUE H,et al.Rapid and accurate Campylobacter jejuni detection with CRISPR-Cas12b based on newly identified Campylobacter jejuni-specific and-conserved genomic signatures[J].Frontiers in Microbiology,2021,12:649010. [57] GAO S,LIU J,LI Z,et al.Sensitive detection of foodborne pathogens based on CRISPR-Cas13a[J].Journal of Food Science,2021,86(6):2615-2625. [58] ZHOU J,YIN L,DONG Y,et al.CRISPR-Cas13a based bacterial detection platform:Sensing pathogen Staphylococcus aureus in food samples[J].Analytica Chimica Acta,2020,1127:225-233. [59] LEE R A,PUIG H,NGUYEN P Q,et al.Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(41):25722-25731. [60] YU F,ZHANG K,WANG Y,et al.CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum Ⅱd-subtype-family from human and cattle fecal samples[J].Parasites Vectors,2021,14(1):208. [61] MA Q,WANG M,ZHENG L,et al.RAA-Cas12a-Tg:A nucleic acid detection system for Toxoplasma gondii based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA)[J].Microorganisms,2021,9(8):1644. [62] QIN P,PARK M,ALFSON K J,et al.Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a[J].ACS Sensors,2019,4(4):1048-1054. [63] ACKERMAN C M,MYHRVOLD C,THAKKU S G,et al.Massively multiplexed nucleic acid detection with Cas13[J].Nature,2020,582(7811):277-282. [64] XU H,XIAO T,CHEN C,et al. Sequence determinants of improved CRISPR sgRNA design[J].Genome Research,2015,25(8):1147-1157. [65] DING X,YIN K,LI Z,et al.Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J].Nature Communications,2020,11(1):4711. [66] LIU T,KNOTT G J,SMOCK D C J,et al.Accelerated RNA detection using tandem CRISPR nucleases[J].Nature Chemical Biology,2021,17(9):982-988. [67] FOZOUNI P,SON S,DIAZ DE L D M,et al.Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J].Cell,2021,184(2):323-333. [68] NGUYEN L T,SMITH B M,JAIN P K.Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection[J].Nature Communications,2020,11(1):4906. [69] WANG X,ZHONG M,LIU Y,et al.Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout,CRISPR/Cas12a-NER[J]. Science Bulletin,2020,65(17):1436-1439. [70] HU M,YUAN C,TIAN T,et al.Single-step,salt-aging-free,and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics[J].Journal of the American Chemical Society,2020,142(16):7506-7513. |
[1] | WU Xuan, ZENG Shenming. Research Progress on the Function,Application and Purification Technology in Serum Albumin [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2265-2275. |
[2] | LI Jiafu, MO Xiaobing. Bioinformatic Analysis of CRISPR-Cas System in Pasteurella multocida [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1742-1753. |
[3] | YU Xingang, YUAN Kaijian, MU Xuanru, WANG Hongcai, QI Nanshan, ZHANG Haoji. Research Progress on the Formation of Cyst Wall and Cyst Wall Proteins of Giardia [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 2061-2068. |
[4] | LIU Bin, LI Meng, XI Qianyun, SUN Jiajie, LUO Junyi, ZHANG Yongliang, CHEN Ting. Research Progress on Biological Characteristics of Hermetia illucens L. and Its Application in Poultry Production [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 586-597. |
[5] | HE Yue, WANG Hui, CHEN Ruipeng, YU Zhixue, TANG Xiangfang, GUO Yuming, XIONG Benhai. Research Progress on Optical and Electrochemical Biosensors for the Diagnosis of Important Diseases in Dairy Cows [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(2): 827-837. |
[6] | MING Yuexiang, WANG Weixin, YANG Xiaoyu, ZHANG Di, LIN Jiahao. Research Progress on Canine Pruritic Skin Diseases [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(3): 1189-1199. |
[7] | ZHAO Jibo, TAN Lei, PAN Hongbin, HUANG Chang, LIU Yong, WANG Guangzheng, DOU Tengfei, WANG Kun, LI Zijian, GE Changrong. Mining Molecular Genetic Markers Based on High-throughput Sequencing Technology and Its Accurate Application in Laying Hens Production [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(10): 3866-3878. |
[8] | YANG Xuqiong, YANG Jinyi, WANG Hong. Advances in Diagnosis Technologies of Viral Animal Epidemic Diseases [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(1): 294-306. |
[9] | LU Liye, NIU Fugui, WANG Zhonghua, LIN Xueyan, WANG Yun, HOU Qiuling. Receiver Operating Characteristic Curve Analysis of Biomarkers of Fatty Liver in Perinatal Dairy Cows [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(1): 361-367. |
[10] | XI Li, QIN Xinxi, SUN Xinfeng, SONG Yumin, LI Zhiqiang. Screening and Application of Campylobacter Bacteriophage in Broilers [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(9): 3273-3282. |
[11] | CHEN Jifa. Nutritional Characteristic of Tenebrio molitor and Its Application in Livestock and Poultry Diets [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(7): 2424-2430. |
[12] | JIAO Ying, JI Lingxi, HUANG Wei, XIAO Meng, LYU Yanli. Diagnosis and Treatment of Feline Dermatophytic Pseudomycetoma [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(3): 1141-1147. |
[13] | SHI Meiyi, YANG Falong. RPA and Its Application in Detection of Animal Pathogens [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(2): 467-476. |
[14] | YAN Hao, FENG Jianyuan, ZHANG Ziyi, YANG Songxin, XU Chunyu, WEI Meng, HUANG Qingping, CHEN Hailan. Progress in Preparation and Clinical Application of Nanobody [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(2): 685-694. |
[15] | LIU Ang, CHENG Yiwen, AN Qi, ZHANG Zhenxing, LI Bin, CHEN Jie, CHEN Qiaoling, DU Li, MAN Churiga, WANG Fengyang, CHEN Si. Establishment of a Rapid Diagnostic Method of RPA for Pasteurella multocida from Goat [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(10): 3752-3760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||