中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (5): 2232-2242.doi: 10.16431/j.cnki.1671-7236.2025.05.027
高子浩1, 李嘉1, 张琳惠1, 张慈1, 刘炳男1, 李俊杰1,2, 夏威1,2
收稿日期:
2024-09-30
出版日期:
2025-05-05
发布日期:
2025-04-27
通讯作者:
夏威
E-mail:xiaweihawaii@163.com
作者简介:
高子浩,E-mail:2285922072@qq.com。
基金资助:
GAO Zihao1, LI Jia1, ZHANG Linhui1, ZHANG Ci1, LIU Bingnan1, LI Junjie1,2, XIA Wei1,2
Received:
2024-09-30
Online:
2025-05-05
Published:
2025-04-27
摘要: 卵母细胞发育成熟依赖于线粒体产生大量三磷酸腺苷(adenosine triphosphate,ATP),以维持成熟所必要的转录和翻译。此外,线粒体还承载着类固醇生成的限速作用。因此,线粒体功能障碍通常会造成不良妊娠结局。体外培养液的非理性环境、氧化应激等不利因素易使卵母细胞线粒体受损,造成ATP、线粒体DNA(mitochondrial DNA,mtDNA)拷贝数下降,活性氧(reactive oxygen species,ROS)水平升高,纺锤体组装受阻,降低卵母细胞成熟率和发育潜能。研究表明,褪黑素、白藜芦醇等外源物质可改善卵母细胞线粒体功能,提高卵母细胞成熟率。虽然提高线粒体质量有助于提高家畜卵母细胞体外生产效率,但其具体调控机制仍不清晰。因此,有必要对线粒体在卵母细胞中的作用机制进行深入探究。笔者简要介绍了线粒体结构和功能,重点综述了线粒体调控卵母细胞成熟的多种机制,包括卵母细胞成熟的信号调控、mtDNA与卵母细胞发育、卵母细胞线粒体能量学与动力学,提出了改善卵母细胞线粒体的方法,并对其研究前景进行了展望,旨在为探究通过靶向改善线粒体功能提高家畜卵母细胞发育能力提供参考。
中图分类号:
高子浩, 李嘉, 张琳惠, 张慈, 刘炳男, 李俊杰, 夏威. 线粒体在家畜卵母细胞成熟过程中的调控机制研究进展[J]. 中国畜牧兽医, 2025, 52(5): 2232-2242.
GAO Zihao, LI Jia, ZHANG Linhui, ZHANG Ci, LIU Bingnan, LI Junjie, XIA Wei. Research Progress on the Regulatory Mechanisms of Mitochondria in the Maturation of Domestic Animal Oocytes[J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(5): 2232-2242.
[1] FERNANDEZ-VIZARRA E,ZEVIANI M.Mitochondrial disorders of the OXPHOS system[J].FEBS Letters,2021,595(8):1062-1106. [2] KIRILLOVA A,SMITZ J E J,SUKHIKH G T,et al.The role of mitochondria in oocyte maturation[J].Cells,2021,10(9):2484. [3] YILDIRIM R M, SELI E. The role of mitochondrial dynamics in oocyte and early embryo development[J]. Seminars in Cell & Developmental Biology, 2024, 159-160: 52-61. [4] LI L,ZHU S,SHU W,et al.Characterization of metabolic patterns in mouse oocytes during meiotic maturation[J].Molecular Cell,2020,80(3):525-540.e9. [5] PODOLAK A,WOCLAWEK-POTOCKA I,LUKASZUK K.The role of mitochondria in human fertility and early embryo development:What can we learn for clinical application of assessing and improving mitochondrial DNA?[J].Cells,2022,11(5):797. [6] ADEBAYO M,SINGH S,SINGH A P,et al.Mitochondrial fusion and fission:The fine-tune balance for cellular homeostasis[J].FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology,2021,35(6):e21620. [7] MURATA D,ARAI K,IIJIMA M,et al.Mitochondrial division,fusion and degradation[J].Journal of Biochemistry,2020,167(3):233-241. [8] MOORE A S,COSCIA S M,SIMPSON C L,et al.Actin cables and comet tails organize mitochondrial networks in mitosis[J].Nature,2021,591(7851):659-664. [9] DE VOS M,GRYNBERG M,HO T M,et al.Perspectives on the development and future of oocyte IVM in clinical practice[J].Journal of Assisted Reproduction and Genetics,2021,38(6):1265-1280. [10] ADHIKARI D,LEE I W,YUEN W S,et al.Oocyte mitochondria—Key regulators of oocyte function and potential therapeutic targets for improving fertility[J].Biology of Reproduction,2022,106(2):366-377. [11] BEN-MEIR A,BURSTEIN E,BORREGO-ALVAREZ A,et al.Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging[J].Aging Cell,2015,14(5):887-895. [12] SUMEGI K,FEKETE K,ANTUS C,et al.BGP-15 protects against oxidative stress- or lipopolysaccharide-induced mitochondrial destabilization and reduces mitochondrial production of reactive oxygen species[J].PLoS One,2017,12(1):e0169372. [13] GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics[J].Nature Reviews.Molecular Cell Biology,2020,21(4):204-224. [14] SKEIE J M,NISHIMURA D Y,WANG C L,et al.Mitophagy:An emerging target in ocular pathology[J].Investigative Ophthalmology & Visual Science,2021,62(3):22. [15] BOYMAN L,KARBOWSKI M,LEDERER W J.Regulation of mitochondrial ATP production:Ca2+ signaling and quality control[J].Trends in Molecular Medicine,2020,26(1):21-39. [16] SPINELLI J B,HAIGIS M C.The multifaceted contributions of mitochondria to cellular metabolism[J].Nature Cell Biology,2018,20(7):745-754. [17] VAN BLERKOM J.Mitochondrial function in the human oocyte and embryo and their role in developmental competence[J].Mitochondrion,2011,11(5):797-813. [18] MITCHELL P.Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism[J].Nature,1961,191(4784):144-148. [19] MILLER W L.Disorders in the initial steps of steroid hormone synthesis[J].The Journal of Steroid Biochemistry and Molecular Biology,2017,165(Pt A):18-37. [20] MILLER W L.Steroid hormone synthesis in mitochondria[J].Molecular and Cellular Endocrinology,2013,379(1-2):62-73. [21] NEBERT D W,WIKVALL K,MILLER W L.Human cytochromes P450 in health and disease[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1612):20120431. [22] ALLEN J A,SHANKARA T,JANUS P,et al.Energized,polarized,and actively respiring mitochondria are required for acute leydig cell steroidogenesis[J].Endocrinology,2006,147(8):3924-3935. [23] ARTEMENKO I P,ZHAO D,HALES D B,et al.Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR),but not total StAR,mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells[J].Journal of Biological Chemistry,2001,276(49):46583-46596. [24] LEQUARRE A S,VIGNERON C,RIBAUCOUR F,et al.Influence of antral follicle size on oocyte characteristics and embryo development in the bovine[J].Theriogenology,2005,63(3):841-859. [25] OGUSHI S,PALMIERI C,FULKA H,et al.The maternal nucleolus is essential for early embryonic development in mammals[J].Science,2008,319(5863):613-616. [26] ZHANG M,XIA G.Hormonal control of mammalian oocyte meiosis at diplotene stage[J].Cellular and Molecular Life Sciences,2012,69(8):1279-1288. [27] XI G,AN L,JIA Z,et al.Natriuretic peptide receptor 2(NPR2) localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-induced meiotic arrest[J].Theriogenology,2018,106:198-209. [28] STRCZY AN'G SKA P,PAPIS K,MORAWIEC E,et al.Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J].Reproductive Biology and Endocrinology,2022,20(1):37. [29] HAO X,WANG Y,KONG N,et al.Epidermal growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse[J].Biology of Reproduction,2016,95(2):45. [30] EPPIG J J.Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals[J].Reproduction,Fertility,and Development,1996,8(4):485-489. [31] HILL J H,CHEN Z,XU H.Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant[J].Nature Genetics,2014,46(4):389-392. [32] HARMAN D.Aging:A theory based on free radical and radiation chemistry[J].Journal of Gerontology,1956,11(3):298-300. [33] JANSEN R.The bottleneck:Mitochondrial imperatives in oogenesis and ovarian follicular fate[J].Molecular and Cellular Endocrinology,145(1-2):81-88. [34] WEI Y H,LEE H C.Oxidative stress,mitochondrial DNA mutation,and impairment of antioxidant enzymes in aging[J].Experimental Biology and Medicine,2002,227(9):671-682. [35] WARZYCH E,LIPINSKA P.Energy metabolism of follicular environment during oocyte growth and maturation[J].The Journal of Reproduction and Development,2020,66(1):1-7. [36] DELL’AQUILA M E,AMBRUOSI B,DE SANTIS T,et al.Mitochondrial distribution and activity in human mature oocytes:Gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation[J].Fertility and Sterility,2009,91(1):249-255. [37] SIRARD M A.Distribution and dynamics of mitochondrial DNA methylation in oocytes,embryos and granulosa cells[J].Scientific Reports,2019,9(1):11937. [38] LONG S,ZHENG Y,DENG X,et al.Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging[J].Communications Biology,2024,7(1):1229. [39] DALTON C M,SZABADKAI G,CARROLL J.Measurement of ATP in single oocytes:Impact of maturation and cumulus cells on levels and consumption[J].Journal of Cellular Physiology,2014,229(3):353-361. [40] RICHANI D,LAVEA C F,KANAKKAPARAMBIL R,et al.Participation of the adenosine salvage pathway and cyclic AMP modulation in oocyte energy metabolism[J].Scientific Reports,2019,9(1):18395. [41] RICHANI D,GILCHRIST R B.Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence[J].Biology of Reproduction,2022,106(2):243-252. [42] LOHKA M J,MALLER J L.Induction of nuclear envelope breakdown,chromosome condensation,and spindle formation in cell-free extracts[J].Journal of Cell Biology,1985,101(2):518-523. [43] WU M,GERHART J C.Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis[J].Developmental Biology,1980,79(2):465-477. [44] CYERT M S,KIRSCHNER M W.Regulation of MPF activity in vitro[J].Cell,1988,53(2):185-195. [45] JAFFE L A,EGBERT J R.Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J].Annual Review of Physiology,2017,79:237-260. [46] FAIENZA F,POLVERINO F,RAJENDRAPRASAD G,et al.AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation[J].Cellular and Molecular Life Sciences,2023,80(9):251. [47] VAN BLERKOM J,DAVIS P W,LEE J.ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer[J].Human Reproduction,1995,10(2):415-424. [48] DUMOLLARD R,DUCHEN M,CARROLL J.The role of mitochondrial function in the oocyte and embryo[J].Current Topics in Developmental Biology,2007,77:21-49. [49] DUMOLLARD R,MARANGOS P,FITZHARRIS G,et al.Sperm-triggered Ca2+ oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production[J].Development,2004,131(13):3057-3067. [50] FONTANA J,MARTÍNKOVÁ S,PETR J,et al.Metabolic cooperation in the ovarian follicle[J].Physiological Research,2020,69(1):33-48. [51] WANG H,CAI H,WANG X,et al.HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge[J].Nature Communications,2019,10(1):5719. [52] LIU X,XIE F,ZAMAH A M,et al.Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle[J].Biology of Reproduction,2014,91(1):9. [53] MAY-PANLOUP P,CHRÉTIEN M F,JACQUES C,et al.Low oocyte mitochondrial DNA content in ovarian insufficiency[J].Human Reproduction,2005,20(3):593-597. [54] MA C,XU Y,ZHANG X,et al.Melatonin mitigates PNMC-induced disruption of spindle assembly and mitochondrial function in mouse oocytes[J].Ecotoxicology and Environmental Safety,2024,282:116703. [55] BABAYEV E,SELI E.Oocyte mitochondrial function and reproduction[J].Current Opinion in Obstetrics & Gynecology,2015,27(3):175. [56] BAHETY D,BÖKE E,RODRÍGUEZ-NUEVO A.Mitochondrial morphology,distribution and activity during oocyte development[J].Trends in Endocrinology and Metabolism,2024,35(10):902-917. [57] RUAN W,LIM H H,SURANA U.Mapping mitotic death:Functional integration of mitochondria,spindle assembly checkpoint and apoptosis[J].Frontiers in Cell and Developmental Biology,2018,6:177. [58] WANG Q,LEADER A,TSANG B K.Follicular stage-dependent regulation of apoptosis and steroidogenesis by prohibitin in rat granulosa cells[J].Journal of Ovarian Research,2013,6(1):23. [59] BAENA V,TERASAKI M.Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle[J].Scientific Reports,2019,9(1):1262. [60] PICCA A,MANKOWSKI R T,BURMAN J L,et al.Mitochondrial quality control mechanisms as molecular targets in cardiac ageing[J].Nature Reviews Cardiology,2018,15(9):543-554. [61] WAKAI T,HARADA Y,MIYADO K,et al.Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation[J].Molecular Human Reproduction,2014,20(11):1090-1100. [62] UDAGAWA O,ISHIHARA T,MAEDA M,et al.Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles[J].Current Biology,2014,24(20):2451-2458. [63] LI X,STRAUB J,MEDEIROS T C,et al.Mitochondria shed their outer membrane in response to infection-induced stress[J].Science,2022,375(6577):eabi4343. [64] ADHIKARI D,LEE I W,AL-ZUBAIDI U,et al.Depletion of oocyte dynamin-related protein 1 shows maternal-effect abnormalities in embryonic development[J].Science Advances,2022,8(24):eabl8070. [65] VANTAGGIATO C,CASTELLI M,GIOVARELLI M,et al.The fine tuning of Drp1-dependent mitochondrial remodeling and autophagy controls neuronal differentiation[J].Frontiers in Cellular Neuroscience,2019,13:120. [66] MOORE B A,GONZALEZ AVILES G D,LARKINS C E,et al.Mitochondrial retention of Opa1 is required for mouse embryogenesis[J].Mammalian Genome,2010,21(7):350-360. [67] CHIARATTI M R.Uncovering the important role of mitochondrial dynamics in oogenesis:Impact on fertility and metabolic disorder transmission[J].Biophysical Reviews,2021,13(6):967-981. [68] ZHANG M,BENER M B,JIANG Z,et al.Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve[J].Cell Death & Disease,2019,10(8):560. [69] ZHANG M,BENER M B,JIANG Z,et al.Mitofusin 2 plays a role in oocyte and follicle development,and is required to maintain ovarian follicular reserve during reproductive aging[J].Aging,2019,11(12):3919-3938. [70] PARK M R,HWANG I S,KWAK T U,et al.Low expression of mitofusin 1 is associated with mitochondrial dysfunction and apoptosis in porcine somatic cell nuclear transfer embryos[J].Animal Science Journal,2020,91(1):e13430. [71] WU S,ZHAO X,WU M,et al.Low expression of mitofusin 1 gene leads to mitochondrial dysfunction and embryonic genome activation failure in ovine-bovine inter-species cloned embryos[J].International Journal of Molecular Sciences,2022,23(17):10145. [72] HOU X,ZHU S,ZHANG H,et al.Mitofusin1 in oocyte is essential for female fertility[J].Redox Biology,2019,21:101110. [73] HUA S,ZHANG H,SONG Y,et al.High expression of Mfn1 promotes early development of bovine SCNT embryos:Improvement of mitochondrial membrane potential and oxidative metabolism[J].Mitochondrion,2012,12(2):320-327. [74] ZHANG H,LI C,WEN D,et al.Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply[J].Redox Biology,2022,49:102215. [75] KANG J T,KOO O J,KWON D K,et al.Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells[J].Journal of Pineal Research,2009,46(1):22-28. [76] PARK D,JEONG H,LEE M N,et al.Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition[J].Scientific Reports,2016,6:21772. [77] LI Y,WANG J,ZHANG Z,et al.Resveratrol compares with melatonin in improving in vitro porcine oocyte maturation under heat stress[J].Journal of Animal Science and Biotechnology,2016,7(1):33. [78] SUGIYAMA M,KAWAHARA-MIKI R,KAWANA H,et al.Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows[J].The Journal of Reproduction and Development,2015,61(4):251-259. [79] LIU M J,SUN A G,ZHAO S G,et al.Resveratrol improves in vitro maturation of oocytes in aged mice and humans[J].Fertility and Sterility,2018,109(5):900-907. [80] CAO Y,ZHAO H,WANG Z,et al.Quercetin promotes in vitro maturation of oocytes from humans and aged mice[J].Cell Death & Disease,2020,11(11):965. [81] WANG H,JO Y J,OH J S,et al.Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity[J].Oncotarget,2017,8(24):38631-38641. [82] SÁ N A R,VIEIRA L A,FERREIRA A C A,et al.Anethole supplementation during oocyte maturation improves in vitro production of bovine embryos[J].Reproductive Sciences,2019,26:1933719119831783. [83] NIE X,DONG X,HU Y,et al.Coenzyme Q10 stimulate reproductive vatality[J].Drug Design,Development and Therapy,2023,17:2623-2637. [84] BEN-MEIR A,BURSTEIN E,BORREGO-ALVAREZ A,et al.Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging[J].Aging Cell,2015,14(5):887-895. [85] MA L,CAI L,HU M,et al.Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies[J].Fertility and Sterility,2020,114(2):331-337. [86] YANG C X,LIU S,MIAO J K,et al.CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J].Theriogenology,2021,159:77-86. [87] PIERRE C J,AZEEZ T A,ROSSETTI M L,et al.Long-term administration of resveratrol and MitoQ stimulates cavernosum antioxidant gene expression in a mouse castration model of erectile dysfunction[J]. Life Sciences,2022,310:121082. [88] AL-ZUBAIDI U,ADHIKARI D,CINAR O,et al.Mitochondria-targeted therapeutics,MitoQ and BGP-15,reverse aging-associated meiotic spindle defects in mouse and human oocytes[J].Human Reproduction ,2021,36(3):771-784. [89] KELSO G F,PORTEOUS C M,COULTER C V,et al.Selective targeting of a redox-active ubiquinone to mitochondria within cells:Antioxidant and antiapoptotic properties[J].The Journal of Biological Chemistry,2001,276(7):4588-4596. [90] SHARMA M,PUNETHA M,SAINI S,et al.Mito-Q supplementation of in vitro maturation or in vitro culture medium improves maturation of buffalo oocytes and developmental competence of cloned embryos by reducing ROS production[J].Animal Reproduction Science,2024,260:107382. |
[1] | 余淼, 李妍娇, 赵彦玲, 晁哲, 王峰, 李梦晗, 蒋智强, 张婷, 薛新宇, 任子利, 孙瑞萍. 断奶应激对五指山猪仔猪肠道形态、抗氧化能力及Nrf2信号通路的影响[J]. 中国畜牧兽医, 2025, 52(5): 2045-2055. |
[2] | 缪心媛, 许晴雨, 夏苏干, 林天金, 蔡国栋, 邹辉, 顾建红, 袁燕, 刘宗平, 卞建春. 聚苯乙烯纳米塑料致雄性小鼠睾丸睾酮合成障碍的作用机制研究[J]. 中国畜牧兽医, 2025, 52(4): 1488-1498. |
[3] | 周鑫, 杨铖, 朱桂名, 何黔蓉, 李岩, 樊新忠, 宁超, 王丹. 基于最新参考序列UM_NZW_1.0绘制家兔基因组NUMTs图谱[J]. 中国畜牧兽医, 2025, 52(4): 1660-1670. |
[4] | 洪嘉俊, 肖金华, 张政, 杨雨婷, 方春, 韩旭. sod基因缺失对单增李斯特菌10403S抗氧化应激作用的影响[J]. 中国畜牧兽医, 2025, 52(4): 1776-1783. |
[5] | 陶思名, 梁慧, 颜畅, 龙润泽, 徐睿卿, 李子胥, 吴英杰, 刘宁, 秦应和. 饲粮中添加绿原酸对母兔繁殖性能及其仔兔生长性能的影响[J]. 中国畜牧兽医, 2025, 52(3): 1080-1088. |
[6] | 王盼盼, 沙拉玛提·波代, 巴合提·博代, 李振伟, 吾热力哈孜·哈孜汗. 基于D-loop区多态性分析新疆地区7个哈萨克牛群体遗传结构和母系起源[J]. 中国畜牧兽医, 2025, 52(3): 1166-1179. |
[7] | 李熙, 刘剑英, 方丽华, 印遇龙, 唐宇龙. 猪链球菌2型SodA、TrxA和TrxC基因的功能研究[J]. 中国畜牧兽医, 2025, 52(3): 1428-1436. |
[8] | 唐雨菲, 莫烨云, 李笑笑, 杨秋莉, 林惠旅, 黄海芳, 林美莹, 李丽. 地菍总黄酮对高脂饮食联合链脲佐菌素诱导糖尿病肾病小鼠脂质过氧化的影响[J]. 中国畜牧兽医, 2025, 52(1): 364-375. |
[9] | 杨文哲, 刘克祥, 王诗睿, 赵彤, 潘飞龙, 赵树臣, 赵立佳. 基于线粒体损伤探讨双酚A诱导小鼠睾丸间质细胞凋亡的研究[J]. 中国畜牧兽医, 2024, 51(9): 3739-3751. |
[10] | 田篮鑫, 杨雨婷, 秦祎, 张政, 田光明, 方春. 谷氨酸脱氢酶gdhA基因缺失对单增李斯特菌抗氧化应激的影响[J]. 中国畜牧兽医, 2024, 51(9): 3771-3779. |
[11] | 唐恬, 王振, 余梦环, 徐坤, 何瑞丽, 秦田哲, 陈创夫, 马忠臣, 王勇. 牛支原体感染牛巨噬细胞对线粒体途径介导凋亡的影响[J]. 中国畜牧兽医, 2024, 51(8): 3625-3634. |
[12] | 郑湘民, 王玉琪, 徐冰洁, 孙朝阳, 高青山, 方南洙, 金庆国. 千金藤素对牛体外卵母细胞和早期胚胎抗凋亡能力的影响[J]. 中国畜牧兽医, 2024, 51(7): 2943-2952. |
[13] | 宁夏青, 王会英, 张暖暖, 王佳琦, 李雪琴, 蒋聪聪, 翟帆, 张士霞. 右美托咪定对腹腔镜气腹大鼠肠屏障功能及肠道菌群的影响[J]. 中国畜牧兽医, 2024, 51(7): 3176-3184. |
[14] | 莫显红, 李俊杰, 郭成, 温诏禹, 邹宇柱, 赵文博, 徐振军. 家畜卵母细胞玻璃化冷冻损伤研究进展[J]. 中国畜牧兽医, 2024, 51(6): 2524-2532. |
[15] | 罗安凤, 华再东, 杨彩侠, 陈矾. 核膜孔亚复合物Nup98/Rae1对小鼠卵母细胞体外减数分裂成熟的影响[J]. 中国畜牧兽医, 2024, 51(5): 1998-2006. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||