中国畜牧兽医 ›› 2025, Vol. 52 ›› Issue (4): 1627-1638.doi: 10.16431/j.cnki.1671-7236.2025.04.016
何晓菲1,2, 雷宇航1,2, 朱砺1,2, 甘麦邻1,2, 沈林園1,2
收稿日期:
2024-08-08
发布日期:
2025-03-29
通讯作者:
沈林園
E-mail:shenlinyuan 0815@163.com
作者简介:
何晓菲,E-mail:nmghxf@163.com。
基金资助:
HE Xiaofei1,2, LEI Yuhang1,2, ZHU Li1,2, GAN Mailin1,2, SHEN Linyuan1,2
Received:
2024-08-08
Published:
2025-03-29
摘要: 脂肪沉积能力是影响猪瘦肉率、屠宰率及肉品质的重要因素之一,而脂肪沉积的调控机制涉及复杂的生物学过程,其中非编码RNA (non-coding RNA,ncRNA)这类表观遗传调节因子扮演着关键角色。环状RNA (circular RNA,circRNA)是真核生物中存在的一种共价闭合的环状ncRNA,具有相对保守性和时空特异性,作用途径丰富多样,并广泛参与细胞增殖和凋亡、基因转录、癌症发生、神经系统疾病等各类生物学过程。近年来,越来越多的研究表明,circRNA对于猪皮下、肌内和内脏脂肪的沉积有着重要调控作用,但大部分研究还处于发现和鉴定的起步阶段,很多circRNA上、下游通路的具体机制尚不清晰。目前来看,circRNA主要通过miRNA的分子海绵机制来控制脂肪沉积相关基因的表达,影响脂质代谢,促进或抑制脂肪细胞的增殖分化,调控猪的脂肪沉积。作者在概述脂肪组织的分类与功能、调控脂肪沉积的关键基因、circRNA的生物发生及功能的基础上,系统回顾并总结了国内外circRNA调控猪脂肪沉积的研究进展,以期为进一步探究猪脂肪沉积的机制提供参考。
中图分类号:
何晓菲, 雷宇航, 朱砺, 甘麦邻, 沈林園. circRNA在猪脂肪沉积调控中的研究进展[J]. 中国畜牧兽医, 2025, 52(4): 1627-1638.
HE Xiaofei, LEI Yuhang, ZHU Li, GAN Mailin, SHEN Linyuan. Research Progress on circRNA Regulating Fat Deposition in Pigs[J]. China Animal Husbandry and Veterinary Medicine, 2025, 52(4): 1627-1638.
[1] MALGWI I H,HALAS V,GRVNVALD P,et al.Genes related to fat metabolism in pigs and intramuscular fat content of pork:A focus on nutrigenetics and nutrigenomics[J].Animals (Basel),2022,12(2):150. [2] LI Y X,YAO L T,LU J.IL-35 inhibits adipogenesis via PPARγ-Wnt/β-catenin signaling pathway by targeting Axin2[J].International Immunopharmacology,2023,122:110615. [3] LIU S,HUANG J,WANG X,et al.Transcription factors regulate adipocyte differentiation in beef cattle[J].Animal Genetics,2020,51(3):351-357. [4] HU C L,FENG X,MA Y F,et al.circADAMTS16 inhibits differentiation and promotes proliferation of bovine adipocytes by targeting miR-10167-3p[J]. Cells,2023,12(1175):1175. [5] ZHANG W N,ZHU H,MA Z W,et al.Subcutaneous adipose tissue alteration in aging process associated with thyroid hormone signaling[J].BMC Medical Genomics,2023,16(1):202. [6] LIU Y J,LIU H T,LI Y,et al.Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis[J].Theranostics,2020,10(10):4705-4719. [7] YU G L,YANG Z,PENG T H,et al.Circular RNAs:Rising stars in lipid metabolism and lipid disorders[J].Journal of Cellular Physiology,2021,236(7):4797-4806. [8] WU J Y,ZHANG S L,YUE B L,et al.circRNA profiling reveals circPPARγ modulates adipogenic differentiation via sponging miR-92a-3p[J].Journal of Agricultural and Food Chemistry,2022,70(22):6698-6708. [9] ZHANG P,ZHANG X O,JIANG T T,et al.Comprehensive identification of alternative back-splicing in human tissue transcriptomes[J].Nucleic Acids Research,2020,48(4):1779-1789. [10] WU W Y,JI P F,ZHAO F Q.circAtlas:An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes[J].Genome Biology,2020,21(1):101. [11] SANGER H L,KLOTZ G,RIESNER D,et al.Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J].Proceedings of the National Academy of Sciences of the United States of America,1976,73(11):3852-3856. [12] JECK W R,SORRENTINO J A,WANG K,et al.Circular RNAs are abundant,conserved,and associated with ALU repeats[J].RNA,2013,19(2):141-157. [13] LU T T,CUI L L,ZHOU Y,et al.Transcriptome-wide investigation of circular RNAs in rice[J].RNA,2015,21(12):2076-2087. [14] MEMCZAK S,JENS M,ELEFSINIOTI A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338. [15] KRISTENSEN L S,ANDERSEN M S,STAGSTED L V W,et al.The biogenesis,biology and characterization of circular RNAs[J].Nature Reviews Genetics,2019,20(11):675-691. [16] YANG Z Z,XIE L,HAN L,et al.Circular RNAs:Regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers[J].Theranostics,2017,7(12):3106-3117. [17] WANG Z Y,WEN Z J,XU H M,et al.Exosomal noncoding RNAs in central nervous system diseases:Biological functions and potential clinical applications[J].Frontiers in Molecular Neuroscience,2022,15:1004221. [18] FANALE D,TAVERNA S,RUSSO A,et al.Circular RNA in exosomes[J].Advances in Experimental Medicine and Biology,2018,1087:109-117. [19] RABE K,LEHRKE M,PARHOFER K G,et al.Adipokines and insulin resistance[J].Molecular Medicine,2008,14(11-12):741-751. [20] MORIGNY P,BOUCHER J,ARNER P,et al.Lipid and glucose metabolism in white adipocytes:Pathways,dysfunction and therapeutics[J].Nature Reviews Endocrinology,2021,17(5):276-295. [21] CZECH M P.Mechanisms of insulin resistance related to white,beige,and brown adipocytes[J].Molecular Metabolism,2020,34:27-42. [22] ZHU X Q,ZENG C F,YU B P.White adipose tissue in metabolic associated fatty liver disease[J].Clinics and Research in Hepatology and Gastroenterology,2024,48(5):102336. [23] SCHUMACHER M,DELCURTO-WYFFELS H,THOMSON J,et al.Fat deposition and fat effects on meat quality-A review[J].Animals (Basel),2022,12(12):1550. [24] CHAIT A,DEN HARTIGH L J.Adipose tissue distribution,inflammation and its metabolic consequences,including diabetes and cardiovascular disease[J]. Frontiers in Cardiovascular Medicine,2020,7:22. [25] GUGLIUCCI A.Biomarkers of dysfunctional visceral fat[J].Advances in Clinical Chemistry,2022,109:1-30. [26] HAUSMAN G J,BASU U,DU M,et al.Intermuscular and intramuscular adipose tissues:Bad vs.good adipose tissues[J].Adipocyte,2014,3(4):242-255. [27] HOCQUETTE J F,GONDRET F,BAÉZA E,et al.Intramuscular fat content in meat-producing animals:Development,genetic and nutritional control,and identification of putative markers[J].Animal,2010,4(2):303-319. [28] XIAO C,WEI T,LIU L X,et al.Whole-transcriptome analysis of preadipocyte and adipocyte and cnstruction of regulatory networks to investigate lipid metabolism in sheep[J].Frontiers in Genetics,2021,12:662143. [29] NEMATBAKHSH S,PEI PEI C,SELAMAT J,et al.Molecular regulation of lipogenesis,adipogenesis and fat deposition in chicken[J].Genes,2021,12(3):414. [30] GÁLVEZ F,DOMÍNGUEZ R,PATEIRO M,et al.Effect of gender on breast and thigh turkey meat quality[J].British Poultry Science,2018,59(4):408-415. [31] 韩丽,黄兴国,尹杰.营养调控对宁乡猪肉品质的影响及其分子机制研究[J].动物营养学报,2023,35(10):6164-6175.HAN L,HUANG X G,YIN J.Effects of nutrition regulation on meat quality of Ningxiang pigs and its molecular mechanism[J].Chinese Journal of Animal Nutrition,2023,35(10):6164-6175.(in Chinese) [32] LAMBE N R,CLELLAND N,DRAPER J,et al.Prediction of intramuscular fat in lamb by visible and near-infrared spectroscopy in an abattoir environment[J].Meat Science,2021,171:108286. [33] HÉRAULT F,DAMON M,CHEREL P,et al.Combined GWAS and LDLA approaches to improve genome-wide quantitative trait loci detection affecting carcass and meat quality traits in pig[J].Meat Science,2018,135:148-158. [34] LEE J E,CHO Y W,DENG C X,et al.MLL3/MLL4-associated PAGR1 regulates adipogenesis by controlling induction of C/EBPβ and C/EBPδ[J].Molecular and Cellular Biology,2020,40(17):e00209-20. [35] GERSTNER M,HELLER V,FECHNER J,et al.Prmt6 represses the pro-adipogenic PPAR-gamma-C/EBP-alpha transcription factor loop[J].Scientific Reports,2024,14(1):6656. [36] AMBELE M A,DHANRAJ P,GILES R,et al.Adipogenesis:A complex interplay of multiple molecular determinants and pathways[J].International Journal of Molecular Sciences,2020,21(12):E4283. [37] DONG P Y,MAI Y,ZHANG Z Y,et al.miR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1[J].Acta Biochimica et Biophysica Sinica,2014,46(7):565-571. [38] GARIN-SHKOLNIK T,RUDICH A,HOTAMISLIGIL G S,et al.FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues[J].Diabetes,2014,63(3):900-911. [39] ZHANG Y,ZHENG Y,WANG X Y,et al.Bovine stearoyl-CoA desaturase 1 promotes adipogenesis by activating the PPARγ receptor[J].Journal of Agricultural and Food Chemistry,2020,68(43):12058-12066. [40] LIU K L,LIN L Y,LI Q,et al.Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex Ⅱ[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(5):2462-2472. [41] KERSTEN S.Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism[J].Journal of Lipid Research,2021,62:100150. [42] REN H,ZHANG H,HUA Z,et al.ACSL4 directs intramuscular adipogenesis and fatty acid composition in pigs[J].Animals (Basel),2022,12(1):119. [43] GARCÍA-NIÑO W R,ZAZUETA C.New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors[J].Life Sciences,2021,265:118763. [44] YUCE K,OZKAN A I.The Krüppel-like factor (KLF) family,diseases,and physiological events[J].Gene,2024,895:148027. [45] LI Y Y,XU Q,WANG Y,et al.Knockdown of KLF7 inhibits the differentiation of both intramuscular and subcutaneous preadipocytes in goat[J].Animal Biotechnology,2023,34(4):1072-1082. [46] QU S B,YANG X S,LI X L,et al.Circular RNA:A new star of noncoding RNAs[J].Cancer Letters,2015,365(2):141-148. [47] ZHANG J,ZHANG X L,LI C D,et al.Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J].RNA Biology,2019,16(2):220-232. [48] LI Z Y,HUANG C,BAO C,et al.Exon-intron circular RNAs regulate transcription in the nucleus[J].Nature Structural&Molecular Biology,2015,22(3):256-264. [49] NGO L H,BERT A G,DREDGE B K,et al.Nuclear export of circular RNA[J].Nature,2024,627(8002):212-220. [50] EBBESEN K K,HANSEN T B,KJEMS J.Insights into circular RNA biology[J]. RNA Biology,2017,14(8):1035-1045. [51] MALVIYA A,BHUYAN R.The recent advancements in circRNA research:From biogenesis to therapeutic interventions[J].Pathology,Research and Practice,2023,248:154697. [52] NI L,YAMADA T,NAKATANI K.Utility of oligonucleotide in upregulating circular RNA production in a cellular model[J].Scientific Reports,2024,14(1):8096. [53] GONG Y R,LIN Z Z,WANG Y,et al.Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals[J].Gene,2023,860:147226. [54] ZENG Y,ZOU Y T,GAO G F,et al.The biogenesis,function and clinical significance of circular RNAs in breast cancer[J].Cancer Biology&Medicine,2022,19(1):14-29. [55] LIANG D M,WILUSZ J E.Short intronic repeat sequences facilitate circular RNA production[J].Genes&Development,2014,28(20):2233-2247. [56] BARRETT S P,WANG P L,SALZMAN J.Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J].eLife,2015,4:e07540. [57] ZHANG Y,ZHANG X O,CHEN T,et al.Circular intronic long noncoding RNAs[J].Molecular Cell,2013,51(6):792-806. [58] ROBIC A,DEMARS J,KVHN C.In-depth analysis reveals production of circular RNAs from non-coding sequences[J].Cells,2020,9(8):E1806. [59] MONTAÑÉS-AGUDO P,VAN DER MADE I,AUFIERO S,et al.Quaking regulates circular RNA production in cardiomyocytes[J].Journal of Cell Science,2023,136(13):jcs261120. [60] NI X Z,DUAN L,BAO Y D,et al.circ_005077 accelerates myocardial lipotoxicity induced by high-fat diet via CyPA/p47PHOX mediated ferroptosis[J].Cardiovascular Diabetology,2024,23(1):129. [61] CHEN R X,CHEN X,XIA L P,et al.N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J].Nature Communications,2019,10(1):4695. [62] ASHWAL-FLUSS R,MEYER M,PAMUDURTI N R,et al.circRNA biogenesis competes with pre-mRNA splicing[J].Molecular Cell,2014,56(1):55-66. [63] DU W W,YANG W,LIU E,et al.FoxO3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J].Nucleic Acids Research,2016,44(6):2846-2858. [64] CHEN Q J J,WANG H B,LI Z,et al.Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription[J].Journal of Hepatology,2022,76(1):135-147. [65] LIU S,GUO X Y,SHANG Q J,et al.The biogenesis,biological functions and modification of circular RNAs[J].Experimental and Molecular Pathology,2023,131:104861. [66] ZHOU B,YANG H,YANG C,et al.Translation of noncoding RNAs and cancer[J].Cancer Letters,2021,497:89-99. [67] YANG Y,FAN X J,MAO M W,et al.Extensive translation of circular RNAs driven by N6-methyladenosine[J].Cell Research,2017,27(5):626-641. [68] ZHOU C,MOLINIE B,DANESHVAR K,et al.Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J].Cell Reports,2017,20(9):2262-2276. [69] CHANG J,SHIN M K,PARK J,et al.An interaction between eIF4A3 and eIF3g drives the internal initiation of translation[J].Nucleic Acids Research, 2023,51(20):10950-10969. [70] GARCÍA-MUSE T,AGUILERA A.R loops:From physiological to pathological roles[J].Cell,2019,179(3):604-618. [71] LI X,ZHANG J L,LEI Y N,et al.Linking circular intronic RNA degradation and function in transcription by RNase H1[J].Science China (Life Sciences),2021,64(11):1795-1809. [72] GU Y,WANG Y Y,HE L Y,et al.Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling[J].Molecular Cancer,2021,20(1):132. [73] LIU C X,CHEN L L.Circular RNAs:Characterization,cellular roles,and applications[J].Cell,2022,185(12):2016-2034. [74] LI B,YANG J Z,HE J,et al.Spatiotemporal regulation and functional analysis of circular RNAs in skeletal muscle and subcutaneous fat during pig growth[J].Biology,2021,10(9):841. [75] LIU X,LIU K,SHAN B,et al.A genome-wide landscape of mRNAs,lncRNAs,and circRNAs during subcutaneous adipogenesis in pigs[J].Journal of Animal Science and Biotechnology,2018,9(1):76. [76] 李萌,李娇,张娜,等.猪脂肪组织circIDH2的鉴定及功能分析[J].中国畜牧杂志,2021,57(S1):136-142.LI M,LI J,ZHANG N,et al.Identification and functional analysis of circIDH2 in porcine adipose tissue[J].Chinese Journal of Animal Science,2021,57(S1):136-142.(in Chinese) [77] 张晓,冉雪琴,牛熙,等.香猪3种组织环状RNA的表达及其功能分析[J].中国畜牧兽医,2020,47(12):3870-3881.ZHANG X,RAN X Q,NIU X,et al.Expression and function analysis of circular RNA in three tissues of Xiang pig[J].China Animal Husbandry&Veterinary Medicine,2020,47(12):3870-3881.(in Chinese) [78] WEI X F,ZHAO X,SHAN X Y,et al.miR-107 regulates adipocyte differentiation and adipogenesis by targeting apolipoprotein C-2(APOC2) in bovine[J].Genes,2022,13(8):1467. [79] AHONEN M A,HARIDAS P A N,MYSORE R,et al.miR-107 inhibits CDK6 expression,differentiation,and lipid storage in human adipocytes[J].Molecular and Cellular Endocrinology,2019,479(1):110-116. [80] SHI X E,LI Y F,JIA L,et al.microRNA-199a-5p affects porcine preadipocyte proliferation and differentiation[J].International Journal of Molecular Sciences,2014,15(5):8526-8538. [81] 李娇,赵天枝,王婕妤,等.circECH1通过充当miR-365-5p海绵抑制猪前体脂肪细胞增殖[J].中国生物化学与分子生物学报,2023,39(5):672-682.LI J,ZHAO T Z,WANG J Y,et al.circECH1 inhibits proliferation of porcine preadipocyte by sponging miR-365-5p[J].Chinese Journal of Biochemistry and Molecular Biology,2023,39(5):672-682.(in Chinese). [82] LI M,LI J,JI M T,et al.circHOMER1 inhibits porcine adipogenesis via the miR-23b/SIRT1 axis[J].FASEB Journal,2023,37(3):e22828. [83] LI A,HUANG W L,ZHANG X X,et al.Identification and characterization of circRNAs of two pig breeds as a new biomarker in metabolism-related diseases[J].Cellular Physiology&Biochemistry,2018,47(6):2458-2470. [84] 董新星,刘金桥,李明丽,等.撒坝猪与大白猪背脂差异circRNA筛选与调控网络分析[J].中国畜牧杂志,2023,59(5):116-123.DONG X X,LIU J Q,LI M L,et al.Screening of differentially expressed circRNAs in back fat of Saba pigs and Large White pigs and analysis of their regulatory networks[J].Chinese Journal of Animal Science,2023,59(5):116-123.(in Chinese) [85] LI Q W,WANG L Y,XING K,et al.Identification of circRNAs associated with adipogenesis based on RNA-Seq data in pigs[J].Genes,2022,13(11):2062. [86] LIU X M,BAI Y,CUI R,et al.sus_circPAPPA2 regulates fat deposition in castrated pigs through the miR-2366/GK pathway[J].Biomolecules,2022,12(6):753. [87] TAN L,CHEN Z,TENG M,et al.Genome-wide analysis of mRNAs,lncRNAs,and circRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang pigs[J].PLoS One,2022,17(1):e0261293. [88] LI J X,ZHAO X Y,WANG Y P,et al.Comprehensive analysis of differentially expressed mRNAs,lncRNAs and circRNAs related to intramuscular fat deposition in Laiwu pigs[J].Genes,2022,13(8):1349. [89] JIN Z,GAO H,FU Y,et al.Whole-transcriptome analysis sheds light on the biological contexts of intramuscular fat deposition in Ningxiang pigs[J].Genes,2024,15(5):642. [90] QI K L,LIU Y K,LI C L,et al.Construction of circRNA-related ceRNA networks in longissimus dorsi muscle of Queshan Black and Large White pigs[J].Molecular Genetics&Genomics,2022,297(1):101-112. [91] LIU Y K,DOU Y Q,QI K L,et al.circSETBP1 acts as a miR-149-5p sponge to promote intramuscular fat deposition by regulating CRTCs[J].Journal of Agricultural and Food Chemistry,2022,70(40):12841-12851. [92] LI M,ZHANG N,ZHANG W F,et al.Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle[J].BMC Genomics,2021,22(1):320. [93] WANG J,CHEN J F,MA Q,et al.Identification and characterization of circRNAs related to meat quality during embryonic development of the longissimus dorsi muscle in two pig breeds[J].Frontiers in Genetics,2022,13:1019687. [94] DING Y Y,HOU Y H,LING Z J,et al.Identification of candidate genes and regulatory competitive endogenous RNA (ceRNA) networks underlying intramuscular fat content in Yorkshire pigs with extreme fat deposition phenotypes[J].International Journal of Molecular Sciences,2022,23(20):12596. [95] RONG X Y,LI R X,GONG T Y,et al.circMEF2C (2,3) modulates proliferation and adipogenesis of porcine intramuscular preadipocytes by miR-383/671-3p/MEF2C axis[J].iScience,2024,27(5):109710. [96] LI B J,HE Y,WU W J,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].Journal of Agricultural and Food Chemistry,2022,70(13):4123-4137. [97] 张娜.circIGF1R调控猪成脂和成肌分化的作用及机制研究[D].太谷:山西农业大学,2022.ZHANG N.Effect and mechanism of circIGF1R in regulating adipogenic and myogenic differentiation in pigs[D].Taigu:Shanxi Agricultural University,2022.(in Chinese) [98] YOUSUF S,LI A,FENG H,et al.Genome-wide expression profiling and networking reveals an imperative role of IMF-associated novel circRNAs as ceRNA in pigs[J].Cells,2022,11(17):2638. [99] WANG J,YANG Y B,XING B S,et al.Castration induced circRNA expressional changes in subcutaneous adipose tissue of male pigs[J].Animal Science Journal,2021,92(1):e13648. [100] FENG H,YOUSUF S,LIU T Y,et al.The comprehensive detection of miRNA and circRNA in the regulation of intramuscular and subcutaneous adipose tissue of Laiwu pig[J].Scientific Reports,2022,12(1):16542. [101] CHEN W W,MA H M,LI B,et al.Spatiotemporal regulation of circular RNA expression during liver development of Chinese indigenous Ningxiang pigs[J]. Genes,2022,13(5):746. |
[1] | 苗娜, 乔嘉坤, 杨慧, 韩萍萍, 许方军, 车兆轩, 代翔毓, 徐明航, 龙志伟, 朱猛进. 杜洛克猪×二花脸猪F2代杂交猪免疫性状全基因组关联分析[J]. 中国畜牧兽医, 2025, 52(4): 1455-1467. |
[2] | 胡慧慧, 付盼盼, 李杰, 闫尊强, 高小莉, 杨姣姣, 黄晓宇. 合作猪TRIF基因CDS区克隆鉴定及组织表达分析[J]. 中国畜牧兽医, 2025, 52(4): 1478-1487. |
[3] | 司维, 谭茜宇, 徐玲芸, 罗廷荣, 李晓宁, 顾金燕. H3N2亚型猪流感病毒HA1蛋白的原核表达及多克隆抗体制备[J]. 中国畜牧兽医, 2025, 52(4): 1739-1749. |
[4] | 王林青, 张刘辉, 陈曦艋, 马世杰, 宋月, 陈红英. 猪瘟病毒E2基因部分表位区重组猪伪狂犬病病毒的构建及生物学特性研究[J]. 中国畜牧兽医, 2025, 52(4): 1815-1824. |
[5] | 韦莹, 段叶辉, 邓近平. 风味氨基酸在猪、鸡生产中的应用研究进展[J]. 中国畜牧兽医, 2025, 52(3): 1089-1101. |
[6] | 计峰, 叶满红, 汤锋. 竹醋在猪、鸡生产中的应用研究进展[J]. 中国畜牧兽医, 2025, 52(3): 1141-1149. |
[7] | 潘向英, 曾智勇, 梁海英, 汤德元, 王彬, 叶泥, 田红利, 边孟婷, 柳佳佳, 黄书. 猪轮状病毒VP6蛋白截短表达及间接ELISA抗体检测方法的建立[J]. 中国畜牧兽医, 2025, 52(3): 1231-1240. |
[8] | 毛福超, 翟崇凯, 田文静, 王聪慧, 宋敏杰, 王迎鲜, 张贺伟. 猪德尔塔冠状病毒感染与抗感染研究进展[J]. 中国畜牧兽医, 2025, 52(3): 1281-1291. |
[9] | 李欢欢, 余晨敏, 田晓榕, 李瑞, 李宗云, 张焱焱, 赵迪, 王蕾, 侯永清, 吴涛. 儿茶提取物对猪流行性腹泻病毒感染幼龄仔猪结肠的保护作用[J]. 中国畜牧兽医, 2025, 52(3): 1360-1369. |
[10] | 陈鑫鹏, 夏榕鸽, 盖新燕, 逯静静, 徐彬. 冷刺激对APP感染仔猪肺损伤的影响及其作用机制研究[J]. 中国畜牧兽医, 2025, 52(3): 1383-1392. |
[11] | 李熙, 刘剑英, 方丽华, 印遇龙, 唐宇龙. 猪链球菌2型SodA、TrxA和TrxC基因的功能研究[J]. 中国畜牧兽医, 2025, 52(3): 1428-1436. |
[12] | 吴诗卉, 周桂仙, 王敏乐, 廖义潇, 文明, 杨颖. 1株柯乐猪源贝莱斯芽孢杆菌的分离鉴定及生物学特性分析[J]. 中国畜牧兽医, 2025, 52(3): 1437-1446. |
[13] | 张洁, 贾骁晔, 童泽宇, 马岩, 雷晨莹, 原霖, 田克恭. 腹泻猪群肠道微生物宏基因组分析[J]. 中国畜牧兽医, 2025, 52(2): 512-521. |
[14] | 李静轩, 林岩娇, 黄琼君, 韩新燕, 张月朗. 山羊骨骼肌发育相关非编码RNA研究进展[J]. 中国畜牧兽医, 2025, 52(2): 582-592. |
[15] | 李晶, 董滢. 枯草芽孢杆菌对保育猪生长性能、肠道形态、血清生化和免疫指标的影响[J]. 中国畜牧兽医, 2025, 52(2): 678-685. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||