中国畜牧兽医 ›› 2024, Vol. 51 ›› Issue (11): 4690-4701.doi: 10.16431/j.cnki.1671-7236.2024.11.004
• 生理生化 • 上一篇
秦克宁1, 陈丹丹1, 徐鹏2, 王小敏1,2
收稿日期:
2024-02-19
发布日期:
2024-10-31
通讯作者:
王小敏
E-mail:WXM_ZMU@163.com
作者简介:
秦克宁,E-mail:qkn17835855870@163.com。
基金资助:
QIN Kening1, CHEN Dandan1, XU Peng2, WANG Xiaomin1,2
Received:
2024-02-19
Published:
2024-10-31
摘要: 自噬是细胞通过溶酶体的功能实现降解自身内容物的过程,自噬相关过程中的突变会导致严重的人类疾病,如癌症、心血管疾病、神经退行性疾病、代谢疾病、肺部疾病和肾脏疾病等。自噬能够联合机体的一些生化反应组建成动态循环系统,起到消除有害物质的作用,且可以为细胞更新和维持体内平衡提供新的能量。因此,自噬在机体的生理和病理过程中发挥着重要作用。近年来,有医学和动物生理病理学研究指出乙酰化修饰在调控细胞自噬过程中发挥着关键作用。乙酰化修饰作为蛋白质翻译后修饰中的一类修饰方法,是由乙酰转移酶和去乙酰化酶介导的可逆的翻译后修饰。其中,乙酰转移酶将乙酰辅酶A的乙酰基团转移至底物蛋白的氨基酸残基上,而乙酰基团的去除由去乙酰化酶完成。乙酰化修饰常发生于组蛋白赖氨酸ε-氨基和非组蛋白的N-端α-氨基上。作者从组蛋白及非组蛋白乙酰化修饰水平方面阐述乙酰化修饰对细胞自噬的影响,以期为深入研究乙酰化修饰在细胞自噬中扮演的角色及其在各类疾病上的治疗作用提供参考和方向。
中图分类号:
秦克宁, 陈丹丹, 徐鹏, 王小敏. 乙酰化修饰调控细胞自噬的研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4690-4701.
QIN Kening, CHEN Dandan, XU Peng, WANG Xiaomin. Research Progress on the Regulation of Autophagy by Acetylation Modification[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(11): 4690-4701.
[1] HEINTZ L,MEYER-SCHWESINGER C.The intertwining of autophagy and the ubiquitin proteasome system in podocyte(patho) physiology[J].Cellular Physiology and Biochemistry,2021,55(S4):68-95. [2] GU X,NARDONE C,KAMITAKI N,et al.The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation[J].Science,2023,381(6660):eadh5021. [3] MAHAPATRA K K,MISHRA S R,BEHERA B P,et al.The lysosome as an imperative regulator of autophagy and cell death[J].Cellular and Molecular Life Sciences,2021,78(23):7435-7449. [4] ASHFORD T P,PORTER K R.Cytoplasmic components in hepatic cell lysosomes[J].Journal of Cell Biology,1962,12(1):198. [5] LI W,LI J,BAO J.Microautophagy:Lesser-known self-eating[J].Cellular and Molecular Life Sciences,2012,69(7):1125-1136. [6] JOHANSEN T,LAMARK T.Selective autophagy mediated by autophagic adapter proteins[J].Autophagy,2011,7(3):279-296. [7] LIN L W,XIA L G,TANG D,et al.Analysis of autophagy-related genes and associated noncoding RNAs and transcription factors in digestive system tumors[J].Future Oncology,2019,15(36):4141-4154. [8] SHEN B,WANG Y,CHENG J,et al.Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2[J].Phytomedicine,2023,109:154561. [9] KUMA A,KOMATSU M,MIZUSHIMA N.Autophagy-monitoring and autophagy-deficient mice[J].Autophagy,2017,13(10):1619-1628. [10] QIANG L,YANG S,CUI Y H,et al.Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing[J].Autophagy,2021,17(9):2128-2143. [11] WU W,LIN L,ZHAO Y,et al.Protein modification regulated autophagy in bombyx mori and drosophila melanogaster[J].Frontiers in Physiology,2023,14:1281555. [12] WANG R,WANG G.Protein modification and autophagy activation[J]. Advances in Experimental Medicine and Biology,2019,1206:237-259. [13] JEON M,PARK J,YANG E,et al.Regulation of autophagy by protein methylation and acetylation in cancer[J].Journal of Cellular Physiology,2022,237(1):13-28. [14] DENG Z,HE M,HU H,et al.Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation[J].Autophagy,2024,20(1):151-165. [15] LI T,SUN W,ZHU S,et al.T-2 toxin-mediated β-arrestin-1 O-glcNAcylation exacerbates glomerular podocyte injury via regulating histone acetylation[J].Advanced Science,2024,11(7):2307648. [16] LING H,LI Y,PENG C,et al.HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression[J].NAR Cancer,2024,6(2):zcae018. [17] BAEKEN M W.Sirtuins and their influence on autophagy[J].Journal of Cellular Biochemistry,2023.Doi:10.1002/jcb.30377.Online ahead of print. [18] GEFFEN Y,ANAND S,AKIYAMA Y,et al.Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation[J].Cell,2023,186(18):3945-3967.e26. [19] WU X,XU M,GENG M,et al.Targeting protein modifications in metabolic diseases:Molecular mechanisms and targeted therapies[J].Signal Transduction and Targeted Therapy,2023,8(1):220. [20] PERRINO C,BARABÁSI A L,CONDORELLI G,et al.Epigenomic and transcriptomic approaches in the post-genomic era:Path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart[J].Cardiovascular Research,2017,113(7):725-736. [21] ZHENG X,WANG Q,ZHOU Y,et al.N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1(FSP1) mRNA[J].Cancer Communications,2022,42(12):1347-1366. [22] SAMBATARO F,PENNUTO M.Post-translational modifications and protein quality control in motor neuron and polyglutamine diseases[J].Frontiers in Molecular Neuroscience,2017,10:82. [23] FERNÁNDEZ-BARRERA J,ALONSO M A.Coordination of microtubule acetylation and the actin cytoskeleton by formins[J].Cellular and Molecular Life Sciences,2018,75(17):3181-3191. [24] PAVLOVA J A,GUSEVA E A,DONTSOVA O A,et al.Natural activators of autophagy[J]. Biochemistry (Moscow),2024.Doi:10.1134/s0006297924010012.Online ahead of print. [25] LIU S Z,YAO S J,YANG H,et al.Autophagy:Regulator of cell death[J].Cell Death & Disease,2023,14(10):648. [26] ZHAO Y G,CODOGNO P,ZHANG H.Machinery,regulation and pathophysiological implications of autophagosome maturation[J].Nature Reviews Molecular Cell Biology,2021,22(11):733-750. [27] ZHEN Y,STENMARK H.Autophagosome biogenesis[J].Cells,2023,12(4):668. [28] XIE Y,LI J,KANG R,et al.Interplay between lipid metabolism and autophagy[J].Frontiers in Cell and Developmental Biology,2020,8:431. [29] MADEO F,BAUER M A,CARMONA-GUTIERREZ D,et al.Spermidine:A physiological autophagy inducer acting as an anti-aging vitamin in humans?[J].Autophagy,2019,15(1):165-168. [30] HOU W,HAO Y,SUN L,et al.The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke[J].Molecular Brain,2022,15(1):14. [31] ASSI M,KIMMELMAN A C.Impact of context-dependent autophagy states on tumor progression[J].Nature Cancer,2023,4(5):596-607. [32] ZHANG R,SUN C,HAN Y,et al.Neutrophil autophagy and NETosis in COVID-19:Perspectives[J].Autophagy,2023,19(3):758-767. [33] GRIFFEY C J,YAMAMOTO A.Macroautophagy in CNS health and disease[J].Nature Reviews Neuroscience,2022,23(7):411-427. [34] YAMAMOTO H,MATSUI T.Molecular mechanisms of macroautophagy,microautophagy,and chaperone-mediated autophagy[J].Journal of Nippon Medical School,2024,91(1):2-9. [35] FILALI-MOUNCEF Y,HUNTER C,ROCCIO F,et al.The ménage à trois of autophagy,lipid droplets and liver disease[J].Autophagy,2022,18(1):50-72. [36] YAMAMOTO H,ZHANG S,MIZUSHIMA N.Autophagy genes in biology and disease[J].Nature Reviews Genetics,2023,24(6):382-400. [37] DESIDERI E,CASTELLI S,DORARD C,et al.Impaired degradation of YAP1 and IL6ST by chaperone-mediated autophagy promotes proliferation and migration of normal and hepatocellular carcinoma cells[J].Autophagy,2023,19(1):152-162. [38] LI X,HE S,MA B.Autophagy and autophagy-related proteins in cancer[J].Molecular Cancer,2020,19(1):12. [39] YANG J,KIM W,KIM D R.Autophagy in cell survival and death[J].International Journal of Molecular Sciences,2023,24(5):4744. [40] CHEN S L,LI C M,LI W,et al.How autophagy,a potential therapeutic target,regulates intestinal inflammation[J].Frontiers in Immunology,2023,14:1087677. [41] HUANG G,XU X,JU C,et al.Identification and validation of autophagy-related gene expression for predicting prognosis in patients with idiopathic pulmonary fibrosis[J].Frontiers in Immunology,2022,13:997138. [42] CHEN T,TU S,DING L,et al.The role of autophagy in viral infections[J].Journal of Biomedical Science,2023,30(1):5. [43] PAUDEL R R,LU D,ROY CHOWDHURY S,et al.Targeted protein degradation via lysosomes[J].Biochemistry,2022,62(3):564-579. [44] SHI L,TU B P.Acetyl-CoA and the regulation of metabolism:Mechanisms and consequences[J].Current Opinion in Cell Biology,2015,33:125-131. [45] DING P,MA Z,LIU D,et al.Lysine acetylation/deacetylation modification of immune-related molecules in cancer immunotherapy[J].Frontiers in Immunology,2022,13:865975. [46] VANDRISSE C M,ESCALANTE-SEMERENA J C.Protein acetylation in bacteria[J].Annual Review of Microbiology,2019,73:111-132. [47] MORGAN M A J,SHILATIFARD A.Epigenetic moonlighting:Catalytic-independent functions of histone modifiers in regulating transcription[J].Science Advances,2023,9(16):eadg6593. [48] RANDHAWA P K,RAJAKUMAR A,DE LIMA I B F,et al.Eugenol attenuates ischemia-mediated oxidative stress in cardiomyocytes via acetylation of histone at H3K27[J].Free Radical Biology and Medicine,2023,194:326-336. [49] HUBER M,BIENVENUT W V,LINSTER E,et al.NatB-mediated N-terminal acetylation affects growth and biotic stress responses[J].Plant Physiology,2020,182(2):792-806. [50] LAMMERS M.Post-translational lysine ac(et)ylation in bacteria:A biochemical,structural,and synthetic biological perspective[J].Frontiers in Microbiology,2021,12:757179. [51] WU D,SHI Y,ZHANG H,et al.Epigenetic mechanisms of immune remodeling in sepsis:Targeting histone modification[J].Cell Death & Disease,2023,14(2):112. [52] ALLFREY V G,FAULKNER R,MIRSKY A E.Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J].Proceedings of the National Academy of Sciences,1964,51(5):786-794. [53] ARNESEN T,GROMYKO D,KAGABO D,et al.A novel human NatA N α-terminal acetyltransferase complex:hNaa16p-hNaa10p(hNat2-hArd1)[J].BMC Biochemistry,2009,10:1-17. [54] NATU A,VERMA T,KHADE B,et al.Histone acetylation:A key determinant of acquired cisplatin resistance in cancer[J]. Clinical Epigenetics,2024,16(1):8. [55] SANTANA D A,SMITH M A C,CHEN E S.Histone modifications in Alzheimer’s disease[J].Genes,2023,14(2):347. [56] WANG X,LI N,ZHENG M,et al.Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer[J].Translational Oncology,2024,39:101815. [57] CHOU K Y,LEE J Y,KIM K B,et al.Histone modification in Saccharomyces cerevisiae:A review of the current status[J].Computational and Structural Biotechnology Journal,2023,21:1843-1850. [58] DING Y,LIU C,ZHANG Y.Aging-related histone modification changes in brain function[J]. Ibrain,2023,9(2):205-213. [59] SHVEDUNOVA M,AKHTAR A.Modulation of cellular processes by histone and non-histone protein acetylation[J].Nature Reviews Molecular Cell Biology,2022,23(5):329-349. [60] GRÄFF J,TSAI L H.Histone acetylation:Molecular mnemonics on the chromatin[J].Nature Reviews Neuroscience,2013,14(2):97-111. [61] LIU R,WU J,GUO H,et al.Post-translational modifications of histones:Mechanisms,biological functions,and therapeutic targets[J].MedComm,2023,4(3):e292. [62] NARITA T,WEINERT B T,CHOUDHARY C.Functions and mechanisms of non-histone protein acetylation[J].Nature Reviews Molecular Cell Biology,2019,20(3):156-174. [63] WANG Y,HUANG Y,LIU J,et al.Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB[J].EMBO Reports,2020,21(1):e48335. [64] LEE I H,FINKEL T.Regulation of autophagy by the p300 acetyltransferase[J].Journal of Biological Chemistry,2009,284(10):6322-6328. [65] WU W,LI K,GUO S,et al.p300/HDAC1 regulates the acetylation/deacetylation and autophagic activities of LC3/Atg8-PE ubiquitin-like system[J].Cell Death Discovery,2021,7(1):128. [66] SU H,YANG F,WANG Q,et al.VPS34 acetylation controls its lipid kinase activity and the initiation of canonical and non-canonical autophagy[J].Molecular Cell,2017,67(6):907-921.e7. [67] YU Y S,SHIN H R,KIM D,et al.Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy[J].Nature Communications,2020,11(1):6297. [68] WAN W,YOU Z,XU Y,et al.mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis[J].Molecular Cell,2017,68(2):323-335.e6. [69] XU Y,WAN W.The bifunctional role of TP53INP2 in transcription and autophagy[J].Autophagy,2020,16(7):1341-1343. [70] FENG X,ZHANG H,MENG L,et al.Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5[J].Autophagy,2021,17(3):723-742. [71] GIL J,RAMÍREZ-TORRES A,ENCARNACIÓN-GUEVARA S.Lysine acetylation and cancer:A proteomics perspective[J].Journal of Proteomics,2017,150:297-309. [72] LI P,GE J,LI H.Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease[J].Nature Reviews Cardiology,2020,17(2):96-115. [73] TAHMI M,RIPPON B,PALTA P,et al.Brain amyloid burden and resting-state functional connectivity in late middle-aged hispanics[J].Frontiers in Neurology,2020,11:529930. [74] SUN T,LI X,ZHANG P,et al.Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth[J].Nature Communications,2015,6(1):7215. [75] WANG J,KHAN S U,CAO P,et al.Construction of PIK3C3 transgenic pig and its pathogenesis of liver damage[J].Life,2022,12(5):630. [76] DENG Z,SUN M,WU J,et al.SIRT1 attenuates sepsis-induced acute kidney injury via Beclin 1 deacetylation-mediated autophagy activation[J].Cell Death & Disease,2021,12(2):217. [77] LIU P,HUANG G,WEI T,et al.Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation[J].Biochimica et Biophysica Acta,2018,1864(3):764-777. [78] POLLETTA L,VERNUCCI E,CARNEVALE I,et al.SIRT5 regulation of ammonia-induced autophagy and mitophagy[J].Autophagy,2015,11(2):253-270. [79] GUO J,WANG Z,WU J,et al.Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling[J].Circulation Research,2019,124(10):1448-1461. [80] DE U,SON J Y,SACHAN R,et al.A new synthetic histone deacetylase inhibitor,MHY2256,induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation[J].International Journal of Molecular Sciences,2018,19(9):2743. [81] YANG D,XIAO C,LONG F,et al.HDAC4 regulates vascular inflammation via activation of autophagy[J].Cardiovascular Research,2018,114(7):1016-1028. [82] WANG R,TAN J,CHEN T,et al.ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion[J].Journal of Cell Biology,2019,218(1):267-284. [83] ZHANG S,SUI L,KONG X,et al.HDAC6 decreases H4K16 and α-tubulin acetylation during porcine oocyte maturation[J].Cell Cycle,2023,22(18):2057-2069. [84] ZHOU W,WANG J,WANG X,et al.Degradation of HDAC10 by autophagy promotes IRF3-mediated antiviral innate immune responses[J].Science Signaling,2022,15(765):eabo4356. [85] ZHOU X,HE Y,QUAN H,et al.Exposure to nicotine regulates prostaglandin E2 secretion and autophagy of granulosa cells to retard follicular maturation in mammals[J].Ecotoxicology and Environmental Safety,2024,277:116358. [86] LI X,MEI Q,YU Q,et al.The TORC1 activates Rpd3L complex to deacetylate Ino80 and H2A.Z and repress autophagy[J].Science Advances,2023,9(10):eade8312. [87] CHEN Z,ZUO X,LI H,et al.Effects of melatonin on maturation,histone acetylation,autophagy of porcine oocytes and subsequent embryonic development[J].Animal Science Journal,2017,88(9):1298-1310. [88] EL-RAEY M,GESHI M,SOMFAI T,et al.Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle[J].Molecular Reproduction and Development,2011,78(4):250-262. [89] LIN Y C,LIN Y C,TSAI M L,et al.TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes[J]. Cell & Bioscience,2022,12(1):32. [90] ZHU L Q,JIANG X Y,FU X T,et al.The involvement of histone H3 acetylation in Bovine herpesvirus 1 replication in MDBK cells[J].Viruses,2018,10(10):525. [91] GAO Q,WANG Y,MA N,et al.Sodium valproate attenuates the iE-DAP induced inflammatory response by inhibiting the NOD1-NF-κB pathway and histone modifications in bovine mammary epithelial cells[J].International Immunopharmacology,2020,83:106392. [92] KANG X,LI C,LIU S,et al.Genome-wide acetylation modification of H3K27ac in bovine rumen cell following butyrate exposure[J].Biomolecules,2023,13(7):1137. [93] WANG X,WANG Z,WANG Q,et al.Trichostatin A and vorinostat promote adipogenic differentiation through H3K9 acetylation and dimethylation[J].Research in Veterinary Science,2019,126:207-212. [94] REN C,LI X,LI J,et al.Acetylation and phosphorylation regulate the role of pyruvate kinase as a glycolytic enzyme or a protein kinase in lamb[J].Journal of Agricultural and Food Chemistry,2024,72(20):11724-11732. [95] ALQUEZAR C,SCHOCH K M,GEIER E G,et al.TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy[J].Science Advances,2021,7(45):eabg3897. [96] FANG P,CHEN C,ZHENG F,et al.NLRP3 inflammasome inhibition by histone acetylation ameliorates sevoflurane-induced cognitive impairment in aged mice by activating the autophagy pathway[J].Brain Research Bulletin,2021,172:79-88. [97] ZACHARI M,GANLEY I G.The mammalian ULK1 complex and autophagy initiation[J].Essays in Biochemistry,2017,61(6):585-596. [98] PAN Z,LI S,GUO H,et al.Ebastine exerts antitumor activity and induces autophagy by activating AMPK/ULK1 signaling in an IPMK-dependent manner in osteosarcoma[J].International Journal of Biological Sciences,2023,19(2):537. [99] DEBNATH J,GAMMOH N,RYAN K M.Autophagy and autophagy-related pathways in cancer[J].Nature Reviews Molecular Cell Biology,2023,24(8):560-575. [100] JIA M,YUE X,SUN W,et al.ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation[J].Science Advances,2023,9(22):eadg4993. [101] HOU C,LU S,SU Y,et al.C/EBP-α induces autophagy by binding to Beclin1 through its own acetylation modification in activated hepatic stellate cells[J].Experimental Cell Research,2021,405(2):112721. [102] XU Y,WAN W.Acetylation in the regulation of autophagy[J].Autophagy,2023,19(2):379-387. [103] SONG T,SU H,YIN W,et al.Acetylation modulates LC3 stability and cargo recognition[J].FEBS Letters,2019,593(4):414-422. [104] YANG Y,ZHU Y,ZHOU S,et al.TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis[J].The EMBO Journal,2022,41(14):e109777. [105] YI C,MA M,RAN L,et al.Function and molecular mechanism of acetylation in autophagy regulation[J].Science,2012,336(6080):474-477. [106] KAIZUKA T,MIZUSHIMA N.Atg13 is essential for autophagy and cardiac development in mice[J].Molecular and Cellular Biology,2016,36(4):585-595. [107] HUANG R,LIU W.Identifying an essential role of nuclear LC3 for autophagy[J].Autophagy,2015,11(5):852-853. [108] HUANG R,XU Y,WAN W,et al.Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J].Molecular Cell,2015,57(3):456-466. [109] LI Y,CHENG X,LI M,et al.Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome-lysosome fusion[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(35):21391-21402. [110] LIU R,ZHI X,ZHONG Q.ATG14 controls SNARE-mediated autophagosome fusion with a lysosome[J].Autophagy,2015,11(5):847-849. [111] ZHANG S,TONG M,ZHENG D,et al.C9orf72-catalyzed GTP loading of Rab39A enables HOPS-mediated membrane tethering and fusion in mammalian autophagy[J].Nature Communications,2023,14(1):6360. [112] HUANG H,OUYANG Q,ZHU M,et al.mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates autophagosome maturation[J].Nature Communications,2021,12(1):6622. [113] TIAN X,ZHENG P,ZHOU C,et al.DIPK2A promotes STX17-and VAMP7-mediated autophagosome-lysosome fusion by binding to VAMP7B[J].Autophagy,2020,16(5):797-810. [114] SHEN Q,SHI Y,LIU J,et al.Acetylation of STX17(syntaxin 17)controls autophagosome maturation[J].Autophagy,2021,17(5):1157-1169. [115] HUANG H,OUYANG Q,MEI K,et al.Acetylation of SCFD1 regulates SNARE complex formation and autophagosome-lysosome fusion[J].Autophagy,2023,19(1):189-203. [116] ZHANG J,WANG J,ZHOU Z,et al.Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors[J].Autophagy,2018,14(6):1043-1059. [117] LI X,QIAN X,LU Z.Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy[J].Autophagy,2017,13(10):1790-1791. [118] JIANG L,SHEN T,WANG X,et al.N-terminal acetylation regulates autophagy[J].Autophagy,2022,18(3):700-702. [119] SHEN T,JIANG L,WANG X,et al.Function and molecular mechanism of N-terminal acetylation in autophagy[J].Cell Reports,2021,37(7):109937. [120] WANG K.Autophagy and apoptosis in liver injury[J].Cell Cycle,2015,14(11):1631-1642. |
[1] | 于明弘, 王萌, 葛冰洁, 闫可心, 王巍, 刘馨蔓, 刘晓童, 邱谦, 桑锐, 张雪梅. 蒲公英甾醇对AFB1诱导鸡原代肝细胞凋亡和自噬的影响[J]. 中国畜牧兽医, 2024, 51(9): 3762-3770. |
[2] | 张康, 巴桑珠扎, 次仁罗布, 旦增洛桑, 尼玛仓决, 斯朗旺姆, 普布曲珍, 德吉玉珍, 索朗曲吉. 高原动物低氧适应的表观遗传学机制研究[J]. 中国畜牧兽医, 2024, 51(4): 1582-1592. |
[3] | 谭磊, 彭小烨, 王开心, 黄小久, 张帆, 禹思宇. 组蛋白去乙酰化酶参与畜禽病毒感染的作用及机制[J]. 中国畜牧兽医, 2024, 51(3): 1259-1266. |
[4] | 秦天苗, 房晓欢, 李俊杰. SIRT2调控自噬的作用机制研究现状[J]. 中国畜牧兽医, 2024, 51(2): 513-520. |
[5] | 艾婧竹, 徐世文. PS-MPs和DEHP联合暴露通过NO/iNOS/NF-κB通路诱导小鼠结肠上皮细胞自噬的作用机制研究[J]. 中国畜牧兽医, 2024, 51(11): 4678-4689. |
[6] | 吴开慧, 周成利, 赵羚均, 许师源, 刘松奇, 董智豪, 原开敏, 王栋. 白消安致小鼠睾丸损伤的机理及其调控通路的研究进展[J]. 中国畜牧兽医, 2023, 50(7): 2811-2819. |
[7] | 程前, 高清清, 王雨禾, 郇长超, 高崧. 禽致病性大肠杆菌外膜蛋白OmpA对DF-1细胞自噬的影响[J]. 中国畜牧兽医, 2023, 50(5): 1971-1980. |
[8] | 郑小惠, 刘坤, 辛航阔, 谢青青, 朱婷. 线粒体自噬在神经退行性疾病中调控的研究进展[J]. 中国畜牧兽医, 2023, 50(2): 490-499. |
[9] | 伍军, 何文文, 普浩, 金敏, 石文玉, 马爱军, 罗亭祥, 杨德鹏, 巴音查汗, 呼尔查. 边缘革蜱aqp3截短基因的表达、生物信息学分析与多克隆抗体制备[J]. 中国畜牧兽医, 2023, 50(11): 4589-4599. |
[10] | 魏春燕, 郭嘉, 朱德馨, 张伟, 朱嘉乐, 邓兴梅, 贾思锋, 刘良波, 张辉. 布鲁氏菌BPE159基因缺失株的构建及BPE159蛋白对细胞自噬因子表达的影响[J]. 中国畜牧兽医, 2023, 50(1): 26-36. |
[11] | 刘靖松, 付京城, 温丙言, 杨彦宾, 郭爽, 焦显芹, 陈瑾, 黄若超, 王月影, 李和平. 猪肠黏膜保护因子HO-1的短小芽孢杆菌表达系统建立与分析[J]. 中国畜牧兽医, 2022, 49(6): 2064-2071. |
[12] | 王梓行, 邓兴梅, 邱润辉, 朱德馨, 李佳, 陶婷婷, 朱嘉乐, 孙志华, 张辉. 长链非编码RNA在PEDV感染Vero-E6细胞中对自噬的调控作用[J]. 中国畜牧兽医, 2022, 49(5): 1942-1950. |
[13] | 王月丽, 邵志然, 易继海, 王勇, 王震, 陈创夫. miR-145a-3p通过靶向ATG14调控布鲁氏菌诱导的RAW264.7自噬[J]. 中国畜牧兽医, 2022, 49(3): 1117-1125. |
[14] | 董书餐, 侯碧巍, 邹娴, 李耀坤, 刘德武, 孙宝丽, 郭勇庆, 邓铭, 柳广斌. 细胞自噬对动物卵泡发育调控的研究进展[J]. 中国畜牧兽医, 2022, 49(11): 4335-4345. |
[15] | 郑会珍, 普浩, 缪荣浩, 甘露, 葛晓敏, 巴音查汗, 李永畅, 郭庆勇. 牛环形泰勒虫enolase基因的原核表达及生物信息学分析[J]. 中国畜牧兽医, 2022, 49(10): 3972-3981. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||