China Animal Husbandry and Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (10): 3715-3725.doi: 10.16431/j.cnki.1671-7236.2021.10.023
• Genetics and Breeding • Previous Articles Next Articles
QI Zicheng, LIU Zhonghua
Received:
2021-02-03
Online:
2021-10-20
Published:
2021-09-30
CLC Number:
QI Zicheng, LIU Zhonghua. Research Advances on OCT4 in Mammalian Early Embryonic Development[J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(10): 3715-3725.
[1] PRATT H P, ZIOMEK C A, REEVE W J, et al.Compaction of the mouse embryo:An analysis of its components[J]. Journal of Embryology and Experimental Morphology, 1982, 70:113-132. [2] JOHNSON M H, ZIOMEK C A.Induction of polarity in mouse 8-cell blastomeres:Specificity, geometry, and stability[J]. Journal of Cell Biology, 1981, 91(1):303-308. [3] MATRE J L, TURLIER H, ILLUKKUMBURA R, et al.Asymmetric division of contractile domains couples cell positioning and fate specification[J]. Nature, 2016, 536(7616):344-348. [4] NISHIOKA N, INOUE K, ADACHI K, et al.The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass[J]. Developmental Cell, 2009, 16(3):398-410. [5] RALSTON A, COX B J, NISHIOKA N, et al.Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2[J]. Development, 2010, 137(3):395-403. [6] CHAZAUD C, YAMANAKA Y, PAWSON T, et al.Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway[J]. Developmental Cell, 2006, 10(5):615-624. [7] GUO G, HUSS M, TONG G Q, et al.Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst[J]. Developmental Cell, 2010, 18(4):675-685. [8] KURIMOTO K, YABUTA Y, OHINATA Y, et al.An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis[J]. Nucleic Acids Research, 2006, 34(5):e42. [9] SAIZ N, WILLIAMS K M, SESHAN V E, et al.Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst[J]. Nature Communications, 2016, 7:13463. [10] POSFAI E, PETROPOULOS S, DE BARROS F R O, et al.Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo[J]. eLife, 2017, 6:e22906. [11] BERG D K, SMITH C S, PEARTON D J, et al.Trophectoderm lineage determination in cattle[J]. Developmental Cell, 2011, 20(2):244-255. [12] DE PAEPE C, CAUFFMAN G, VERLOES A, et al.Human trophectoderm cells are not yet committed[J]. Human Reproduction, 2013, 28(3):740-749. [13] SCHÖLER H R, HATZOPOULOS A K, BALLING R, et al.A family of octamer-specific proteins present during mouse embryogenesis:Evidence for germline-specific expression of an Oct factor[J]. The EMBO Journal, 1989, 8(9):2543-2550. [14] YEOM Y I, FUHRMANN G, OVITT C E, et al.Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells[J]. Development, 1996, 122(3):881-894. [15] NORDHOFF V, HUBNER K, BAUER A, et al.Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences[J]. Mammalain Genome, 2001, 12(4):309-317. [16] DAVIS R L, CHENG P F, LASSAR A B, et al.The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation[J]. Cell, 1990, 60(5):733-746. [17] SCHOLER H R, RUPPERT S, SUZUKI N, et al.New type of POU domain in germ line-specific protein Oct-4[J]. Nature, 1990, 344(6265):435-439. [18] LEE T I, JENNER R G, BOYER L A, et al.Control of developmental regulators by Polycomb in human embryonic stem cells[J]. Cell, 2006, 125(2):301-313. [19] BABAIE Y, HERWIG R, GREBER B, et al.Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells[J]. Stem Cells, 2007, 25(2):500-510. [20] NICHOLS J, ZEVNIK B, ANASTASSIADIS K, et al.Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4[J]. Cell, 1998, 95(3):379-391. [21] CAUFFMAN G, LIEBAERS I, VAN STEIRTEGHEM A, et al.POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos[J]. Stem Cells, 2006, 24(12):2685-2691. [22] LEE J, KIM H K, RHO J Y, et al.The human OCT-4 isoforms differ in their ability to confer self-renewal[J]. Journal of Biological Chemistry, 2006, 281(44):33554-33565. [23] GUO C L, LIU L, JIA Y D, et al.A novel variant of Oct3/4 gene in mouse embryonic stem cells[J]. Stem Cell Research, 2012, 9(2):69-76. [24] MIZUNO N, KOSAKA M.Novel variants of Oct-3/4 gene expressed in mouse somatic cells[J]. Journal of Biological Chemistry, 2008, 283(45):30997-31004. [25] WANG X, DAI J.Concise review:Isoforms of OCT4 contribute to the confusing diversity in stem cell biology[J]. Stem Cells, 2010, 28(5):885-893. [26] HWANG J Y, OH J N, LEE D K, et al.Identification and differential expression patterns of porcine OCT4 variants[J]. Reproduction, 2015, 149(1):55-66. [27] OKAZAWA H, OKAMOTO K, ISHINO F, et al.The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer[J]. The EMBO Journal, 1991, 10(10):2997-3005. [28] TAKEDA J, SEINO S, BELL G I.Human Oct3 gene family:cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues[J]. Nucleic Acids Research, 1992, 20(17):4613-4620. [29] KIRCHHOF N, CARNWATH J W, LEMME E, et al.Expression pattern of Oct-4 in preimplantation embryos of different species[J]. Biology of Reproduction, 2000, 63(6):1698-1705. [30] KIM S H, CHOI K H, LEE D K, et al.Identification and characterization of the OCT4 upstream regulatory region in Sus scrofa[J]. Stem Cells International, 2019, 2019:2130973. [31] ROSNER M H, VIGANO M A, OZATO K, et al.A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo[J]. Nature, 1990, 345(6277):686-692. [32] SCHOLER H R, DRESSLER G R, BALLING R, et al.Oct-4:A germline-specific transcription factor mapping to the mouse t-complex[J]. The EMBO Journal, 1990, 9(7):2185-2195. [33] PLACHTA N, BOLLENBACH T, PEASE S, et al.Oct4 kinetics predict cell lineage patterning in the early mammalian embryo[J]. Nature Cell Biology, 2011, 13(2):117-123. [34] JERABEK S, MERINO F, SCHOLER H R, et al.OCT4:Dynamic DNA binding pioneers stem cell pluripotency[J]. Biochimica et Biophysica Acta, 2014, 1839(3):138-154. [35] PESCE M, SCHOLER H R.Oct-4:Gatekeeper in the beginnings of mammalian development[J]. Stem Cells, 2001, 19(4):271-278. [36] PALMIERI S L, PETER W, HESS H, et al.Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation[J]. Developmantal Biology, 1994, 166(1):259-267. [37] KUIJK E W, DU PUY L, VAN TOL H T, et al.Differences in early lineage segregation between mammals[J]. Developmental Dynamics, 2008, 237(4):918-927. [38] CAUFFMAN G, VAN DE VELDE H, LIEBAERS I, et al.Oct-4 mRNA and protein expression during human preimplantation development[J]. Molecular Human Reproduction, 2005, 11(3):173-181. [39] HAMBILIKI F, STROM S, ZHANG P, et al.Co-localization of NANOG and OCT4 in human pre-implantation embryos and in human embryonic stem cells[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(10):1021-1028. [40] SCHULTZ R M.Regulation of zygotic gene activation in the mouse[J]. Bioessays, 1993, 15(8):531-538. [41] LI L, ZHENG P, DEAN J.Maternal control of early mouse development[J]. Development, 2010, 137(6):859-870. [42] WU G, HAN D, GONG Y, et al.Establishment of totipotency does not depend on Oct4A[J]. Nature Cell Biology, 2013, 15(9):1089-1097. [43] FRUM T, HALBISEN M A, WANG C, et al.Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst[J]. Developmental Cell, 2013, 25(6):610-622. [44] GAO L, WU K, LIU Z, et al.Chromatin accessibility landscape in human early embryos and its association with evolution[J]. Cell, 2018, 173(1):248-259. [45] NIWA H, TOYOOKA Y, SHIMOSATO D, et al.Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation[J]. Cell, 2005, 123(5):917-929. [46] LIU S, BOU G, SUN R, et al.Sox2 is the faithful marker for pluripotency in pig:Evidence from embryonic studies[J]. Developmental Dynamics, 2015, 244(4):619-627. [47] BOU G, LIU S, GUO J, et al.Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos[J]. Developmantal Biology, 2016, 410(1):36-44. [48] FOGARTY N M E, MCCARTHY A, SNIJDERS K E, et al.Genome editing reveals a role for OCT4 in human embryogenesis[J]. Nature, 2017, 550(7674):67-73. [49] KIM S J, KOO O J, PARK H J, et al.Oct4 overexpression facilitates proliferation of porcine fibroblasts and development of cloned embryos[J]. Zygote, 2015, 23(5):704-711. [50] LE BIN G C, MUNOZ-DESCALZO S, KUROWSKI A, et al.Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst[J]. Development, 2014, 141(5):1001-1010. [51] SIMMET K, ZAKHARTCHENKO V, PHILIPPOU-MASSIER J, et al.OCT4/POU5F1 is required for NANOG expression in bovine blastocysts[J]. Proceeding of The National Academy of Sciences of The Unted States of America, 2018, 115(11):2770-2775. [52] GU P, GOODWIN B, CHUNG A C, et al.Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development[J]. Molecular and Cellular Biology, 2005, 25(9):3492-3505. [53] LI Y Q.Networks of transcription factors for Oct4 expression in mice[J]. DNA and Cell Biology, 2017, 36(9):725-736. [54] SUNG B, DO H J, PARK S W, et al.Regulation of OCT4 gene expression by liver receptor homolog-1 in human embryonic carcinoma cells[J]. Biochemical and Biophys Research Communication, 2012, 427(2):315-320. [55] WEIKUM E R, TUNTLAND M L, MURPHY M N, et al.A structural investigation into Oct4 regulation by orphan nuclear receptors, germ cell nuclear factor (GCNF), and liver receptor homolog-1(LRH-1)[J]. Journal of Molecular Biology, 2016, 428(24 Pt B):4981-4992. [56] GUO J, ZHAO M H, LIANG S, et al.Liver receptor homolog 1 influences blastocyst hatching in pigs[J]. Journal of Reproduction and Development, 2016, 62(3):297-303. [57] VIZLIN-HODZIC D, JOHANSSON H, RYME J, et al.SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding[J]. Cell Reprogram, 2011, 13(1):13-27. [58] CHUANG Y S, HUANG W H, PARK S W, et al.Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter[J]. Stem Cells, 2011, 29(4):660-669. [59] WANG K, SENGUPTA S, MAGNANI L, et al.Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts[J]. PLoS One, 2010, 5(5):e10622. [60] PARISI S, PASSARO F, ALOIA L, et al.Klf5 is involved in self-renewal of mouse embryonic stem cells[J]. Journal of Cell Science, 2008, 121(Pt 16):2629-2634. [61] WEI Z, YANG Y, ZHANG P, et al.Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming[J]. Stem Cells, 2009, 27(12):2969-2978. [62] WEI Z, GAO F, KIM S, et al.Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency[J]. Cell Stem Cell, 2013, 13(1):36-47. [63] FANG L, ZHANG J, ZHANG H, et al.H3K4 methyltransferase Set1a is a key Oct4 coactivator essential for generation of Oct4 positive inner cell mass[J]. Stem Cells, 2016, 34(3):565-580. [64] ZHANG X, ZHANG J, WANG T, et al.Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells[J]. Journal of Biological Chemistry, 2008, 283(51):35825-35833. [65] LI J, LI J, CHEN B.Oct4 was a novel target of Wnt signaling pathway[J]. Molecular and Cellular Biochemistry, 2012, 362(1-2):233-240. [66] CHEN C Y, LEE D S, YAN Y T, et al.Bcl3 bridges LIF-STAT3 to Oct4 signaling in the maintenance of naïve pluripotency[J]. Stem Cells, 2015, 33(12):3468-3480. [67] LI H, FAN R, SUN M, et al.Nspc1 regulates the key pluripotent Oct4-Nanog-Sox2 axis in P19 embryonal carcinoma cells via directly activating Oct4[J]. Biochemical and Biophys Research Communication, 2013, 440(4):527-532. [68] TAMM C, BÖWER N, ANNERÉN C.Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF[J]. Journal of Cell Science, 2011, 124(Pt 7):1136-1144. [69] MASUI S, NAKATAKE Y, TOYOOKA Y, et al.Pluripotency governed by Sox2via regulation of Oct3/4 expression in mouse embryonic stem cells[J]. Nature Cell Biology, 2007, 9(6):625-635. [70] LI Y Q.Master stem cell transcription factors and signaling regulation[J]. Cell Reprogram, 2010, 12(1):3-13. [71] OKUMURA-NAKANISHI S, SAITO M, NIWA H, et al.Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells[J]. Journal of Biological Chemistry, 2005, 280(7):5307-5317. [72] RIZZINO A, WUEBBEN E L.Sox2/Oct4:A delicately balanced partnership in pluripotent stem cells and embryogenesis[J]. Biochimica et Biophysica Acta, 2016, 1859(6):780-791. [73] DO E K, CHEON H C, JANG I H, et al.Reptin regulates pluripotency of embryonic stem cells and somatic cell reprogramming through Oct4-dependent mechanism[J]. Stem Cells, 2014, 32(12):3126-3136. [74] CHOI I, CAREY T S, WILSON C A, et al.Evidence that transcription factor AP-2γ is not required for Oct4 repression in mouse blastocysts[J]. PLoS One, 2013, 8(5):e65771. [75] GALONSKA C, ZILLER M J, KARNIK R, et al.Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming[J]. Cell Stem Cell, 2015, 17(4):462-470. [76] RAZIN A.CpG methylation, chromatin structure and gene silencing-a three-way connection[J]. The EMBO Journal, 1998, 17(17):4905-4908. [77] SHARIFI-ZARCHI A, GEROVSKA D, ADACHI K, et al.DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism[J]. BMC Genomics, 2017, 18(1):964. [78] HATTORI N, NISHINO K, KO Y G, et al.Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells[J]. Journal of Biological Chemistry, 2004, 279(17):17063-17069. [79] OLARIU V, LÖVKVIST C, SNEPPEN K.Nanog, Oct4 and Tet1 interplay in establishing pluripotency[J]. Scientific Reports, 2016, 6:25438. [80] COSTA Y, DING J, THEUNISSEN T W, et al.NANOG-dependent function of TET1 and TET2 in establishment of pluripotency[J]. Nature, 2013, 495(7441):370-374. [81] LI J Y, PU M T, HIRASAWA R, et al.Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog[J]. Moluecular and Cellular Biology, 2007, 27(24):8748-8759. [82] SHANAK S, HELMS V.DNA methylation and the core pluripotency network[J]. Developmental Biology, 2020, 464(2):145-160. [83] CHOI H W, JOO J Y, HONG Y J, et al.Distinct enhancer activity of Oct4 in naive and primed mouse pluripotency[J]. Stem Cell Reports, 2016, 7(5):911-926. [84] SHAKYA A, CALLISTER C, GOREN A, et al.Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion[J]. Moluecular and Cellular Biology, 2015, 35(6):1014-1025. [85] CAREY T S, CHOI I, WILSON C A, et al.Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage[J]. Stem Cells Development, 2014, 23(3):219-229. [86] WILLIAMS E O, TAYLOR A K, BELL E L, et al.Sirtuin 1 promotes deacetylation of Oct4 and maintenance of naive pluripotency[J]. Cell Reports, 2016, 17(3):809-820. [87] ETCHEGARAY J P, CHAVEZ L, HUANG Y, et al.The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine[J]. Nature Cell Biology, 2015, 17(5):545-557. [88] ZHANG C, HUANG S, ZHUANG H, et al.YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23):4507-4518. |
[1] | ZHU Xuedan, PAN Xueqing, MA Junyan, ZHOU Lele, ZHANG Shouquan. Research Progress on the Effects of Prostaglandin F2α and Its Analogues on the Reproductive Performance of Mammal [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3072-3082. |
[2] | TAO Weikun, LIU Bo, HUANG Fei, WANG Jie, GAO Qinghua. Research Progress on Xist lncRNA Mediated X Chromosome Inactivation and Its Application [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(1): 216-223. |
[3] | WANG Pengpeng, HUANG Shulin, ZHANG Yunke, WANG Zhanhui, WU Wenxue. Research Progress on Serum-free Suspension Culture of Mammalian Cells [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(3): 839-845. |
[4] | GUO Xuefeng, BAO Pengjia, CHANG Yongfang, ZHANG Yongfeng, LI Zhongbang, LEI Lei, YAN Ping, PAN Heping. Research Progress on the Development and Regulation of Mammalian Hair Follicles [J]. , 2019, 46(2): 387-394. |
[5] | XU Weihua, WU Zhenfang, SHI Junsong. Research Progress on Methods to Improve Mammalian Cloning Efficiency [J]. , 2018, 45(9): 2516-2523. |
[6] | HE Jing, HAI Le, Sirendalai, MING Liang, YI Li, Jirimutu. Application of Metagenomics in Mammals Gut Microbiome [J]. , 2018, 45(12): 3438-3446. |
[7] | CAO Jun-guo, WEI Hai-jun, XU Bao-zeng. Research Progress on the Relationship between Cryopreservation of Mammalian Germ Cells and Their DNA Methylation [J]. , 2017, 44(3): 819-824. |
[8] | XIAO Kai-li, YIN Yu-long, ZHANG Lin, DENG Bai-chuan, DENG Jin-ping, TAN Cheng-quan. Regulation Effects and Mchanism of Amino Acids on Lipid Metabolism in Mammals [J]. , 2017, 44(12): 3473-3481. |
[9] | JIA Sheng-jun, ZHAO Jiao, LI Na. Biological Functions of TLRs in Mammalian Ovulation Processes [J]. , 2016, 43(6): 1591-1596. |
[10] | XU Li-jie, SUN Wu-sheng, HU De-bao, FANG Nan-zhu, LI Zhong-shu, Li Fu-jun. Research Advances on Somatic Cell Nuclear Transfer in Yanbian Yellow Cattle [J]. , 2015, 42(10): 2739-2744. |
[11] | YUAN Yu-guo,PENG Qiu-ling. null [J]. , 2014, 41(8): 188-192. |
[12] | GUO Qian-qian, WANG Da-tao, CHU Wen-hui, ZHAO Hai-ping, SUN Hong-mei, LI Chun-yi. Research Progress of Relationship between P21 Gene and Mammalian Regeneration [J]. , 2014, 41(5): 171-176. |
[13] | XUN Wen-juan, ZHOU Han-lin, HOU Guan-yu, CAO Ting, SHI Li-guang. Research Progress on Reproduction Regulation of Kiss-1 Gene in Male Mammals [J]. , 2014, 41(1): 171-174. |
[14] | YUAN Xi. Research Progress of β-defensins in Mammalian [J]. , 2013, 40(2): 103-107. |
[15] | ZHANG Qing-dong, ZHANG Cheng-juan, DAI Ye. Progress on Wnt Pathway in Mammalian Intestinal Stem Cells [J]. , 2013, 40(11): 121-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||