China Animal Husbandry and Veterinary Medicine ›› 2019, Vol. 46 ›› Issue (12): 3598-3606.doi: 10.16431/j.cnki.1671-7236.2019.12.017
• Animal Nutrition and Feed Science • Previous Articles Next Articles
WANG Shuling1,2, WANG Houfu1,2, GAI Yeding1,2, YI Guo1,2, LI Pengfei1,2, YANG Renhui1,2, ZHOU Rongkang2, YANG Zhen2, CHENG Xiao2, LENG Jing1,2
Received:
2019-05-09
Online:
2019-12-20
Published:
2019-12-21
CLC Number:
WANG Shuling, WANG Houfu, GAI Yeding, YI Guo, LI Pengfei, YANG Renhui, ZHOU Rongkang, YANG Zhen, CHENG Xiao, LENG Jing. Research on Effects of Ruminant Gastrointestinal Microorganisms on the Host Through the Gut-Brain Axis[J]. China Animal Husbandry and Veterinary Medicine, 2019, 46(12): 3598-3606.
[1] 杜向禹.基于无菌小鼠研究肠道微生物对抑郁行为的作用[D].重庆:重庆医科大学,2016. DU X Y.Study on the effect of intestinal microbes on depression behavior based on sterile mice[D].Chongqing:Chongqing Medical University,2016.(in Chinese) [2] SAMPSON T,DEBELIUS J,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J].Cell,2016,167(6):1469-1480. [3] ROMIJN J A,CORSSMIT E P,HAVEKES L M,et al.Gut-brain axis[J].Current Opinion in Clinical Nutrition & Metabolic Care,2008,11(4):518-521. [4] MONTIEL-CASTRO A J,GONZÁLEZ-CERVANTES R M,BRAVO-RUISECO G,et al.The microbiota-gut-brain axis:Neurobehavioral correlates,health and sociality[J].Frontiers in Integrative Neuroscience,2013,7:70-86. [5] CANT J P,MCBRIDE B W,CROOM W J.The regulation of intestinal metabolism and its impact on whole animal energetics[J].Journal of Animal Science,1996,74(10):2541-2553. [6] MARTIN C R,OSADCHIY V,KALANI A,et al.Thebrain-gut-microbiome axis[J].Cellular and Molecular Gastroenterology and Hepatology,2018,6(2):133-148. [7] PENG S,YIN J,LIU X,et al.First insights into the microbial diversity in the omasum and reticulum of bovine using illuminasequencing[J].Journal of Applied Genetics,2015,56(3):393-401. [8] MALMUTHUGE N,GRIEBEL P J,GUAN L L.Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves[J].Applied and Environmental Microbiology,2014,80(6):2021-2028. [9] DOWD S E,CALLAWAY T R,WOLCOTT R D,et al.Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX ampliconpyrosequencing (bTEFAP)[J].BioMed Central Microbiology,2008,8(1):125. [10] DAVIES D R,THEODOROU M K,LAWRENCE M I G,et al.Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces[J].Journal of General Microbiology,1993,139(6):1395-1400. [11] ORPIN C G,JOBLIN K N.The rumen anaerobic fungi[J].Rumen Microbial Ecosystem,1997,46(4):401-408. [12] 姜艳雪.黑龙江省部分地区绵羊三种肠道原虫基因分型及人兽共患可能性评价[D].哈尔滨:东北农业大学,2016. JIANG Y X.Genotyping of three intestinal protozoa and evaluation of the possibility of zoonosis in sheep in parts of Heilongjiang province[D].Harbin:Northeast Agricultural University,2016.(in Chinese) [13] MORGAVI D P,SAKURADA M,MIZOKAMI M,et al.Effects of ruminal protozoa on cellulose degradation and the growth of an anaerobic ruminal fungus,Piromyce ssp.strain OTS1,in vitro[J].Applied and Environmental Microbiology,1994,60(10):3718-3723. [14] 蔡娟,雒秋江,王选,等.口服福尔马林和祛原虫对绵羊瘤胃微生物群落和消化酶活性的影响[J].中国畜牧兽医,2016,43(10):2578-2590. CAI J,LUO Q J,WANG X,et al.Effects of oral formalin and mites on rumen microbial community and digestive enzyme activities in sheep[J].China Animal Husbandry & Veterinary Medicine,2016,43(10):2578-2590.(in Chinese) [15] 冯仰廉.反刍动物营养学[M].北京:科学出版社,2004. FENG Y L.Ruminant Nutrition[M].Beijing:Science Press,2004.(inChinese) [16] BRAVO J A,FORSYTHE P,CHEW M V,et al.Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(38):16050-16055. [17] TOLHURST G,HEFFRON H,LAM Y S,et al.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes,2012,61(2):364-371. [18] WANG Y,TELESFORD K M,OCHOA-REPÁRAZ J,et al.An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling[J].Nature Communication,2014,5:4432. [19] SINGH V,ROTH S,LLOVERA G,et al.Microbiota dysbiosis controls the neuroinflammatory response after stroke[J].Journal of Neuroscience,2016,36(28):7428-7440. [20] YANO J,YU K,DONALDSON G,et al.Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J].Cell,2015,161(2):264-276. [21] WIKOFF W R,ANFORA A T,LIU J,et al.Metabolomics analysis reveals large effects of gut microfloraon mammalian blood metabolites[J].Proceedings of the National Academy of Sciences,2009,106(10):3698-3703. [22] SAMUEL B S,SHAITO A,MOTOIKE T,et al.Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor,Gpr41[J].Proceedings of the National Academy of Sciences,2008,105(43):16767-16772. [23] HAGHIKIA A,JÖRG S,DUSCHA A,et al.Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine[J].Immunity,2015,43(4):817-829. [24] LYTE M.Probiotics function mechanistically as delivery vehicles for neuroactive compounds:Microbial endocrinology in the design and use of probiotics[J].Bioessays,2011,33(8):574-581. [25] LYTE M.Microbial endocrinology:Host-microbiota neuroendocrine interactions influencing brain and behavior[J].Gut Microbes,2014,5(3):381-389. [26] WALL R,CRYAN J F,ROSS R P,et al.Bacterial neuroactive compounds produced by psychobiotics[J].Advances in Experimental Medicine & Biology,2014,817(817):221-239. [27] FURNESS J B,RIVERA L R,CHO H J,et al.The gut as a sensory organ[J].Nature Reviews Gastroenterology & Hepatology,2013,10(12):729-740. [28] MORTON G J,KAIYALA K J,FOSTER-SCHUBERT K E,et al.Carbohydrate feeding dissociates the postprandial FGF19 response from circulating bile acid levels in humans[J].The Journal of Clinical Endocrinology & Metabolism,2014,99(2):E241-E245. [29] HU X,BONDE Y,EGGERTSEN G,et al.Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism[J].Journal of Internal Medicine,2014,275(1):27-38. [30] TOPPING D L,CLIFTON P M.Short-chain fatty acids and human colonic function:Roles of resistant starch and nonstarch polysaccharides[J].Physiological Reviews,2001,81(3):1031-1064. [31] CANI P D,LECOURT E,DEWULF E M,et al.Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J].American Journal of Clinical Nutrition,2009,90(5):1236-1243. [32] NØHRAB M K,EGERODAB K L,CHRISTIANSENS H.Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia[J].Neuroscience,2015,290:126-137. [33] KIMURA I,INOUE D,MAEDA T,et al.Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41(GPR41)[J].Proceedings of the National Academy of Sciences,2011,108(19):8030-8035. [34] DEN BESTEN G,BLEEKER A,GERDING A,et al.Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J].Diabetes,2015,64(7):2398-2408. [35] 蒋涛.瘤胃微生物重塑对围产后期奶牛采食量和采食行为的影响[D].北京:中国农业大学,2018. JIANG T.Effects of rumen microbial remodeling on feed intake and feeding behavior of dairy cows in the perinatal period[D].Beijing:China Agricultural University,2018.(inChinese) [36] KIM D Y,CAMILLERI M.Serotonin:A mediator of the brain-gut connection[J].American Journal of Gastroenterology,2000,95(10):2698-2709. [37] RUDDICK J P,EVANS A K,NUTT D J,et al.Tryptophan metabolism in the central nervous system:Medical implications[J].Expert Reviews in Molecular Medicine,2006,8(20):1-27. [38] LARTIGUE G D,SERRE C B D L,RAYBOULD H E.Vagal afferent neurons in high fat diet-induced obesity;Intestinal microflora,gut inflammation and cholecystokinin[J].Physiology & Behavior,2011,105(1):100-105. [39] FORSYTHE P,BIENENSTOCK J,KUNZE W A.Vagal pathways for microbiome-brain-gut axis communication[J].Advances in Experimental Medicine and Biology,2014,817(5):115-133. [40] ERTURK-HASDEMIR D,KASPER D L.Resident commensals shaping immunity[J].Current Opinion in Immunology,2013,25(4):450-455. [41] CONNOR E E,EVOCK-CLOVER C M,WALKER M P,et al.Comparative gut physiology symposium:Comparative physiology of glucagon-like peptide-2:Implications and applications for production and health of ruminants[J].Journal of Animal Science,2015,93(2):492-501. [42] CONNOR E E,KAHL S,ELSASSER T H,et al.Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut[J].Journal of Dairy Science,2013,96(3):1793-1802. [43] GORKA P,KOWALSKI Z M,PIETRZAK P,et al.Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves[J].Journal of Physiology and Pharmacology:An Official Journal of the Polish Physiological Society,2009,60(4):47-53. [44] JIAA Z,CHENB A,BAOA F,et al.Effect of nisin on microbiome-brain-gut axis neurochemicals by Escherichia coli-induced diarrhea in mice[J].Microbial Pathogenesis,2018,119:65-71. [45] LIANG G X,MALMUTHUGE N,MCFADDEN T B,et al.Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J].PLoS One,2014,9(3):e92592. [46] KIM Y S,HO S B.Intestinal goblet cells and mucins in health and disease:Recent insights and progress[J].Current Gastroenterology Reports,2010,12(5):319-330. [47] CHENG M,QIAN L,SHEN G,et al.Microbiota modulate tumoral immune surveillance in lung through aγδT17 immune cell-dependent mechanism[J].Cancer Research,2014,74(15):4030-4041. [48] SCHULZ O,PABST O.Antigen sampling in the small intestine[J].Trends in Immunology,2013,34(4):155-161. [49] HELEN L,SUE T,JASON C,et al.Regulation of obesity-related insulin resistance with gut anti-inflammatory agents[J].Cell Metabolism,2015,21(4):527-542. [50] 张雪敏.骨髓移植后免疫系统重建过程中肠道微生物菌群变化规律的研究[D].济南:山东师范大学,2018. ZHANG X M.Study on the changes of intestinal microflora during the reconstruction of immune system after bone marrow transplantation[D].Jinan:Shandong Normal University,2018.(in Chinese) [51] HOUGHTON L A,ATKINSON W,WHITAKER R P,et al.Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome[J].Gut,2003,52(5):663-670. [52] PARK A J,COLLINS J,BLENNERHASSETT P A,et al.Altered colonic function and microbiota profile in a mouse model of chronic depression[J].Neurogastroenterology and Motility,2013,25(9):733-740. [53] VUONG H E,HSIAO E Y.Emerging roles for the gut microbiome in autism spectrum disorder[J].Biological Psychiatry,2016,81(5):411-423. [54] SAMPSON T,DEBELIUS J,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease[J].Cell,2016,167(6):1469-1480. [55] LI W,DOWD S E,SCURLOCK B,et al.Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria[J].Physiology & Behavior,2009,96(4):557-567. [56] PYNDT J B,Hansen J T,KRYCH L,et al.A possible link between food and mood:Dietary impact on gut microbiota and behavior in BALB/c mice[J].PLoS One,2014,9(8):e103398. [57] BEILHARZ J E,KAAKOUSH N O,MANIAM J,et al.Cafeteria diet and probiotic therapy:Cross talk among memory,neuroplasticity,serotonin receptors and gut microbiota in the rat[J].Molecular Psychiatry,2017,23(2):351-361. [58] MOUNA H,CHAYSAVANH M,ANDREU S,et al.Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition:Anexplicative factor of functional intestinal disorders?[J].Clinical Nutrition,2018,10(1):38-39. [59] QIN Y,WADE P A.Crosstalk between the microbiome and epigenome:Messages from bugs[J].The Journal of Biochemistry,2017,163,105-112. [60] DONOHOE D,GARGE N,ZHANG X,et al.The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J].Cell Metabolism,2011,13(5):517-526. [61] CORTESE R,LU L,YU Y,et al.Epigenome-microbiomecrosstalk:A potential new paradigm influencing neonatal susceptibility to disease[J].Epigenetics,2016,11:205-215. [62] CANI P D,DEWEVER C,Delzenne N M.Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J].British Journal of Nutrition,2004,92(3):521-526. [63] CANI P D,NEYRINCK A M,MATON N,et al.Oligofructose promotes satiety in rats fed a high-fat diet:Involvement of glucagon-like peptide-1[J].Obesity Research,2005,13(6):1000-1007. [64] CANI P D,KNAUF C,IGLESIAS M A,et al.Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor[J].Diabetes,2006,55(5):1484-1490. [65] BATTERHAM R L,COWLEY M A,SMALL C J,et al.Gut hormone PYY3-36 physiologically inhibits food intake[J].Nature,2002,418(6898):650-654. [66] PIRES N M,IGREJA B,SERRÃO M P,et al.Acute salt loading induces sympathetic nervous system overdrivein mice lacking salt-inducible kinase 1(SIK1)[J].Hypertension Research,2019,42(8):1114-1124. [67] 席锐,李发弟,王维民,等.湖羊在西北寒旱地区行为学和生理指标的观测[J].草业学报,2016,25(5):184-191. XI R,LI F D,WANG W M,et al.Observation of behavioral and physiological indicators of Huyang in cold and dry areas in Northwest China[J].Journal of Grass Industry,2016,25(5):184-191.(in Chinese) [68] BALDWIN VI R L,MCLEODK R,KLOTZJ L,et al.Rumen development,intestinal growth and hepatic metabolism in the pre-and postweaning ruminant[J].American Dairy Science Association,2004,87(E-supp):E55-E65. [69] YEOMAN C J,ISHAQ S L,BICHI E,et al.Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract[J].Scientific Reports,2018,8(1):3197-3213. [70] 董晓丽.益生菌的筛选鉴定及其对断奶仔猪、犊牛生长和消化道微生物的影响[D].北京:中国农业科学院,2013. DONG X L.Screening and identification of probiotics and their effects on weaned pigs,calves and gutmicrobes[D].Beijing:Chinese Academy of Agricultural Sciences,2013.(in Chinese) |
[1] | KONG Weiyi, WANG Feifei, YUE Kang, QIN Junjie, ZHU Hao, GUO Yansheng. Effect of Guiqi Yimu Oral Liquid on Plasma Metabolites in Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 913-923. |
[2] | LIANG Jingwen, WANG Lina. Research Progress of Bile Acid Function in Gut-brain Axis [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 924-931. |
[3] | WANG Guang, ZOU Jiahao, ZHANG Yongtao, LI Dexian, LI Xueqing, YU Mengqi, CHEN Lu, YUAN Yuxin, LI Guang. Difference Analysis of Metabolites in Testis of Guanzhong Dairy Goats at Different Developmental Stages [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3453-3464. |
[4] | ZHANG Jia, WANG Yuan, AN Xiaoping, QI Jingwei. Nutritional Characteristics of Sunflower By-products and Its Application in Ruminants [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(3): 916-924. |
[5] | LI Wandong, ZHANG Xiaowei, FENG Yuzhe, CUI Zhanhong. Research Advances on Applications of Trace Element Cooper in Ruminants Production [J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(1): 178-189. |
[6] | GOU Zhongyong, CUI Xiaoyan, FAN Qiuli, LI Long, LIN Xiajing, WANG Yibing, JIANG Shouqun, JIANG Zongyong. Effects of Mixed Lipid on Breast Muscle Fatty Acid Composition, and Underlying Metabolomics Mechanism in Qingyuan Chickens [J]. China Animal Husbandry and Veterinary Medicine, 2020, 47(4): 1058-1069. |
[7] | ZHUANG Mingliang, LI Zhiyong, WANG Jinzhou, LIU Nannan, WANG Zhi. Metabolomic Analysis Imidacloprid Effect of Honeybee Worker Based on Liquid Chromatograph Mass Spectrometer [J]. , 2019, 46(8): 2220-2227. |
[8] | YU Wenjing, WANG Chao, YI Xianfeng, LIN Bo, PANG Tiande, HUANG Zhichao. Evaluation of Nutritional Value of Various Common Ruminant Feeds in Subtropical by in vitro Fermentation [J]. China Animal Husbandry and Veterinary Medicine, 2019, 46(12): 3530-3537. |
[9] | WANG Yuke, OU Yahong, ZHANG Liyun, WANG Yanxin, WANG Xu, PENG Dapeng, WANG Yulian, PAN Yuanhu, XIE Shuyu, CHEN Dongmei, HUANG Lingli, TAO Yanfei. Research Progress on Sample Preparation for Detection of Sulfonamides and Its Metabolites in Animal Food and Environment [J]. China Animal Husbandry and Veterinary Medicine, 2019, 46(10): 3032-3041. |
[10] | WANG Jun, YANG Yuan, ZHANG Yundan, WEN Ming, ZHOU Bijun, CHENG Zhentao, YUN Jun, LI Tao. Molecular Characteristics and Cluster of PPRV Guizhou Strains Based on N Gene [J]. , 2018, 45(8): 2057-2066. |
[11] | LI Peng, ZHANG Yangdong. Research Progress on Analysis Methods for Triazine Herbicides and Their metabolites [J]. , 2018, 45(7): 2025-2033. |
[12] | YANG Gai-qing, WANG Lin-feng, LIAN Hong-xia, DU Ying-hui, CAO Yu-liang, ZHAO Zhi-wei, GUO Wen-juan, CHEN Shou-bao, LI Ming, DAI Tong-tong. Effects of Eucommia ulmoides Leaves on Sheep Metabolism Based on Blood Metabonomics with Liquid Chromatography-mass Spectrometry [J]. , 2017, 44(7): 1915-1924. |
[13] | ZHAO Ling-na, JIN Hong-yan, LIANG Lin, LI Gang. A SYBR Green Ⅰ Based on Real-time Quantitative RT-PCR Assay for Specific Detection of Peste des Petits Ruminants Virus [J]. , 2016, 43(11): 2844-2851. |
[14] | LIU Xiao-hui, YANG Yun-qing, YE Ling-ling, ZHU He, LV Jian-qiang, ZHAO Wen-hua, YAN Hong, YIN Shang-lian, HUA Qun-yi, YANG Shi-biao, ZHANG Guang-pei, ZHOU Xiao-li, DONG Jun, AI Jun. Research on the Production Process of Competitive ELISA Test Kit for Peste des Petits Ruminants Virus [J]. , 2014, 41(9): 31-34. |
[15] | ZHAO Wen-nian, WANG Qing-hua, LIU Chun-ju, WANG Shu-juan, LEI Cheng-hong, BAO Jing-yue, WANG Zhi-liang. Expression and Identification of F Protein of Peste Des Petits Ruminants Virus Strain Tibet 07 in Insect Cells [J]. , 2014, 41(8): 29-33. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||