China Animal Husbandry and Veterinary Medicine ›› 2021, Vol. 48 ›› Issue (10): 3565-3574.doi: 10.16431/j.cnki.1671-7236.2021.10.007
• Physiology and Biochemistry • Previous Articles Next Articles
FU Yu, ZHANG Bo, LING Yao, ZHANG Hao
Received:
2021-04-21
Online:
2021-10-20
Published:
2021-09-30
CLC Number:
FU Yu, ZHANG Bo, LING Yao, ZHANG Hao. Reviews on Process and Regulation of Skeletal Muscle Growth and Development[J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(10): 3565-3574.
[1] SULAIMAN K M, SAULO L S, DAVID E G.New insights in muscle biology that alter meat quality[J]. Annual Review of Animal Biosciences, 2021, 9(16):355-377. [2] TROTTER J A, PURSLOW P P.Functional morphology of the endomysium in series fibered muscles[J]. Journal of Morphology, 1992, 212(2):109-122. [3] BORG T K, CAULFIELD J B.Morphology of connective tissue in skeletal muscle[J]. Tissue Cell, 1980, 12(1):197-207. [4] PASSERIEUX E, ROSSIGNOL R, CHOPARD A, et al.Structural organization of the perimysium in bovine skeletal muscle:Junctional plates and associated intracellular subdomains[J]. Journal of Structural Biology, 2006, 154(2):206-216. [5] VELLEMAN S G, 秦玉蓉, 彭春艳.家禽孵化期胚胎肌肉发育研究进展[J]. 中国家禽, 2010, 32(5):43-45. VELLEMAN S G, QIN Y R, PENG C Y.Research progress on muscle development of poultry embryo during hatching period[J]. China Poultry, 2010, 32(5):43-45.(in Chinese) [6] OTTENHEIJM C A, GRANZIER H.Lifting the nebula:Novel insights into skeletal muscle contractility[J]. Physiology (Bethesda), 2010, 25(5):304-310. [7] PETER J B, BARNARD R J, EDGERTON V R, et al.Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits[J]. Biochemistry, 1972, 11(14):2627-2633. [8] PICARD B, LEFAUCHEUR L, BERRI C, et al.Muscle fiber ontogenesis in farm animal species[J]. Reproduction Nutrition Development, 2002, 42(5):415-431. [9] SCHIAFFINO S, REGGIANI C.Fiber types in mammalian skeletal muscles[J]. Physiological Reviews, 2011, 91(4):1447-1531. [10] GROS J, MANCEAU M, THOME V, et al.A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature, 2005, 435(7044):954-958. [11] ASAKURA A, RUDNICKI M A.Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation[J]. Exp Hematol, 2002, 30(11):1339-1345. [12] CHAL J, POURQUIE O.Making muscle:Skeletal myogenesis in vivo and in vitro[J]. Development, 2017, 144(12):2104-2122. [13] CHRIST B, ORDAHL C P.Early stages of chick somite development[J]. Anatomy and Embryology (Berl), 1995, 191(5):381-396. [14] KAHANE N, KALCHEIM C.Identification of early postmitotic cells in distinct embryonic sites and their possible roles in morphogenesis[J]. Cell and Tissue Research, 1998, 294(2):297-307. [15] CINNAMON Y, KAHANE N, KALCHEIM C.Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome[J]. Development, 1999, 126(19):4305-4315. [16] PARKER M H, SEALE P, RUDNICKI M A.Looking back to the embryo:Defining transcriptional networks in adult myogenesis[J]. Nature Reviews Genetics, 2003, 4(7):497-507. [17] JENSEN P B, PEDERSEN L, KRISHNA S, et al.A Wnt oscillator model for somitogenesis[J]. Biophysical Journal, 2010, 98(6):943-950. [18] MURPHY M, KARDON G.Origin of vertebrate limb muscle:The role of progenitor and myoblast populations[J]. Current Topics in Development Biology, 2011, 96:1-32. [19] VAN HORN R, CROW M T.Fast myosin heavy chain expression during the early and late embryonic stages of chicken skeletal muscle development[J]. Development Biology, 1989, 134(2):279-288. [20] SABOURIN L A, RUDNICKI M A.The molecular regulation of myogenesis[J]. Clinical Genetics, 2000, 57(1):16-25. [21] WALSH K, PERLMAN H.Cell cycle exit upon myogenic differentiation[J]. Current Opinion in Genetics & Development, 1997, 7(5):597-602. [22] ABMAYR S M, PAVLATH G K.Myoblast fusion:Lessons from flies and mice[J]. Development, 2012, 139(4):641-656. [23] HORSLEY V, PAVLATH G K.Forming a multinucleated cell:Molecules that regulate myoblast fusion[J]. Cells Tissues Organs, 2004, 176(1-3):67-78. [24] MOHAMMADABADI M, BORDBAR F, JENSEN J, et al.Key genes regulating skeletal muscle development and growth in farm animals[J]. Animals, 2021, 11(3):835-846. [25] TAJBAKHSH S, BUCKINGHAM M E.Mouse limb muscle is determined in the absence of the earliest myogenic factor Myf-5[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(2):747-751. [26] RUDNICKI M A, SCHNEGELSBERG P N, STEAD R H, et al.MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell, 1993, 75(7):1351-1359. [27] BRAUN T, RUDNICKI M A, ARNOLD H H, et al.Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death[J]. Cell, 1992, 71(3):369-382. [28] ZAMMIT P S.Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72(1):19-32. [29] MANKOO B S, COLLINS N S, ASHBY P, et al.Mox2 is a component of the genetic hierarchy controlling limb muscle development[J]. Nature, 1999, 400(6739):69-73. [30] TSUJI K, KRAUT N, GROUDINE M, et al.Vitamin D(3) enhances the expression of I-mfa, an inhibitor of the MyoD family, in osteoblasts[J]. Biochimica et Biophysica Acta, 2001, 1539(1-2):122-130. [31] TEBOUL L, SUMMERBELL D, RIGBY P W.The initial somitic phase of Myf5 expression requires neither Shh signaling nor Gli regulation[J]. Genes & Development, 2003, 17(23):2870-2874. [32] MASTROYIANNOPOULOS N P, NICOLAOU P, ANAYASA M, et al.Down-regulation of myogenin can reverse terminal muscle cell differentiation[J]. PLoS One, 2012, 7(1):e29896. [33] VIVIAN J L, OLSON E N, KLEIN W H.Thoracic skeletal defects in myogenin- and MRF4-deficient mice correlate with early defects in myotome and intercostal musculature[J]. Developmental Biology, 2000, 224(1):29-41. [34] RAWLS A, VALDEZ M R, ZHANG W, et al.Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice[J]. Development, 1998, 125(13):2349-2358. [35] HASTY P, BRADLEY A, MORRIS J H, et al.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature, 1993, 364(6437):501-506. [36] NABESHIMA Y, HANAOKA K, HAYASAKA M, et al.Myogenin gene disruption results in perinatal lethality because of severe muscle defect[J]. Nature, 1993, 364(6437):532-535. [37] PEIRIS H N, PONNAMPALAM A P, OSEPCHOOK C C, et al.Placental expression of myostatin and follistatin-like-3 protein in a model of developmental programming[J]. American Journal of Physiology Endocrinology and Metabolism, 2010, 298(4):E854-E861. [38] BEILHARZ M W, LAREU R R, GARRETT K L, et al.Quantitation of muscle precursor cell activity in skeletal muscle by Northern analysis of MyoD and myogenin expression:Application to dystrophic (mdx) mouse muscle[J]. Molecular and Cellular Neuroscience, 1992, 3(4):326-331. [39] GOULDING M D, CHALEPAKIS G, DEUTSCH U, et al.Pax-3, a novel murine DNA binding protein expressed during early neurogenesis[J]. EMBO Journal, 1991, 10(5):1135-1147. [40] JOSTES R F, HUI T E, JAMES A C, et al.In vitro exposure of mammalian cells to radon:Dosimetric considerations[J]. Radiation Research, 1991, 127(2):211-219. [41] SEALE P, SABOURIN L A, GIRGIS-GABARDO A, et al.Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102(6):777-786. [42] BOBER E, FRANZ T, ARNOLD H H, et al.Pax-3 is required for the development of limb muscles:A possible role for the migration of dermomyotomal muscle progenitor cells[J]. Development, 1994, 120(3):603-612. [43] MAROTO M, RESHEF R, MUNSTERBERG A E, et al.Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue[J]. Cell, 1997, 89(1):139-148. [44] SEGER C, HARGRAVE M, WANG X, et al.Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease[J]. Development Dynamics, 2011, 240(11):2440-2451. [45] MCKINNELL I W, ISHIBASHI J, LE GRAND F, et al.Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex[J]. Nature Cell Biology, 2008, 10(1):77-84. [46] BAJARD L, RELAIX F, LAGHA M, et al.A novel genetic hierarchy functions during hypaxial myogenesis:Pax3 directly activates Myf5 in muscle progenitor cells in the limb[J]. Genes &Development, 2006, 20(17):2450-2464. [47] HU P, GELES K G, PAIK J H, et al.Codependent activators direct myoblast-specific MyoD transcription[J]. Development Cell, 2008, 15(4):534-546. [48] RELAIX F, ROCANCOURT D, MANSOURI A, et al.A Pax3/Pax7-dependent population of skeletal muscle progenitor cells[J]. Nature, 2005, 435(7044):948-953. [49] CURTIS E, LITWIC A, COOPER C, et al.Determinants of muscle and bone aging[J]. Journal of Cellular Physiology, 2015, 230(11):2618-2625. [50] ADAMS G R.Invited Review:Autocrine/paracrine IGF-Ⅰ and skeletal muscle adaptation[J]. Journal of Applied Physiology, 2002, 93(3):1159-1167. [51] MORIYAMA S, AYSON F G, KAWAUCHI H.Growth regulation by insulin-like growth factor-Ⅰ in fish[J]. Bioscience Biotechnology and Biochemistry, 2000, 64(8):1553-1562. [52] FLANAGAN-STEET H, HANNON K, MCAVOY M J, et al.Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb[J]. Developmental Biology, 2000, 218(1):21-37. [53] SCATA K A, BERNARD D W, FOX J, et al.FGF receptor availability regulates skeletal myogenesis[J]. Experimental Cell Researh, 1999, 250(1):10-21. [54] YAMADA S, BUFFINGER N, DIMARIO J, et al.Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy[J]. Medicine and Science in Sports and Exercise, 1989, 21(5 Suppl):S173-S180. [55] LEFAUCHEUR J P, SEBILLE A.Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy[J]. Neuroscience Letters, 1995, 202(1-2):121-124. [56] MCFARLAND D C, LIU X, VELLEMAN S G, et al.Variation in fibroblast growth factor response and heparan sulfate proteoglycan production in satellite cell populations[J]. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2003, 134(3):341-351. [57] MARICS I, PADILLA F, GUILLEMOT J F, et al.FGFR4 signaling is a necessary step in limb muscle differentiation[J]. Development, 2002, 129(19):4559-4569. [58] GROVES J A, HAMMOND C L, HUGHES S M.FGF8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish[J]. Development, 2005, 132(19):4211-4222. [59] WROBLEWSKI O M, VEGA-SOTO E E, NGUYEN M H, et al.Impact of human epidermal growth factor on tissue-engineered skeletal muscle structure and function[J]. Tissue Engineering Part A, 2021, 3(1):1-9. [60] MCPHERRON A C, LAWLER A M, LEE S J.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. [61] AMTHOR H, OTTO A, VULIN A, et al.Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18):7479-7484. [62] FLYNT A S, LI N, THATCHER E J, et al.Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate[J]. Nature Genetics, 2007, 39(2):259-263. [63] MANCEAU M, GROS J, SAVAGE K, et al.Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Development, 2008, 22(5):668-681. [64] KAMBADUR R, SHARMA M, SMITH T P, et al.Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research, 1997, 7(9):910-916. [65] HORSLEY V, JANSEN K M, MILLS S T, et al.IL-4 acts as a myoblast recruitment factor during mammalian muscle growth[J]. Cell, 2003, 113(4):483-494. [66] SERRANO A L, BAEZA-RAJA B, PERDIGUERO E, et al.Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy[J]. Cell Metabolism, 2008, 7(1):33-44. [67] SPITZ F, DEMIGNON J, PORTEU A, et al.Expression of myogenin during embryogenesis is controlled by six/sine oculis homeoproteins through a conserved MEF3 binding site[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24):14220-14225. [68] RELAIX F, BUCKINGHAM M.From insect eye to vertebrate muscle:Redeployment of a regulatory network[J]. Genes & Development, 1999, 13(24):3171-3178. [69] DE LUCA G, FERRETTI R, BRUSCHI M, et al.Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells[J]. Stem Cells, 2013, 31(11):2478-2491. [70] HAWKE T J, MEESON A P, JIANG N, et al.p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle[J]. American Journal of Physiology Cell Physiology, 2003, 285(5):C1019-C1027. [71] YANG Y, FAN X, YAN J, et al.A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development[J]. Nucleic Acids Research, 2021, 49(3):1313-1329. [72] METZGER T, GACHE V, XU M, et al.MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function[J]. Nature, 2012, 484(7392):120-124. [73] MILLAY D P, O'ROURKE J R, SUTHERLAND L B, et al.Myomaker is a membrane activator of myoblast fusion and muscle formation[J]. Nature, 2013, 499(7458):301-305. [74] CORBEIL H B, WHYTE P, BRANTON P E.Characterization of transcription factor E2F complexes during muscle and neuronal differentiation[J]. Oncogene, 1995, 11(5):909-920. [75] CHANG F, FANG R, WANG M, et al.The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs[J]. Transgenic Research, 2017, 26(1):25-36. [76] SILES L, SANCHEZ-TILLO E, LIM J W, et al.ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression[J]. Molecular Cell Biology, 2013, 33(7):1368-1382. [77] DEMONBREUN A R, MCNALLY E M.Muscle cell communication in development and repair[J]. Current Opinion in Pharmacology, 2017, 34(1):7-14. [78] CLOP A, MARCQ F, TAKEDA H, et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature Genetics, 2006, 38(7):813-818. [79] TAN Y, GAN M, SHEN L, et al.Profiling and functional analysis of long noncoding rnas and mrnas during porcine skeletal muscle development[J]. International Journal of Molecular Sciences, 2021, 22(2):503-524. [80] SARTORI R, ROMANELLO V, SANDRI M.Mechanisms of muscle atrophy and hypertrophy:Implications in health and disease[J]. Nature Communications, 2021, 12(1):330-342. [81] ZANELLA B T T, MAGIORE I C, DURAN B O S, et al.Ascorbic acid supplementation improves skeletal muscle growth in pacu (Piaractus mesopotamicus) juveniles:In vivo and in vitro studies[J]. International Journal of Molecular Sciences, 2021, 22(6):2995-3014. |
[1] | WANG Saiqiao, ZHAO Lu, ZHAI Zhenhan, ZHANG Binglei, JIA Wanhang, WANG Yuqin. Tissue Expression and Bioinformatics Analysis of miR-449a/b Precursor Sequences in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2175-2184. |
[2] | YANG Guitao, MA Jideng, LI Xuewei, GE Liangpeng, ZHANG Jinwei. Research Advance on Regulation of Skeletal Muscle Physiology Function by Short Chain Fatty Acids [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2286-2295. |
[3] | WU Zhijuan, CHAI Zhixin, WANG Jikun, WANG Jiabo, ZHONG Jincheng, XIN Jinwei. Expression Analysis of Specific Matrix Metalloproteinases and Functionally Related Genes of Skeletal Muscles in Yak [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1774-1784. |
[4] | LU Hui, CAI Gaofeng, WU Caihong, QIU Shulei, YUAN Chen, CHEN Xiaolan, LIU Yun, QIN Kaili. Effect of Agrocybe aegerita Polysaccharid on Immunomodulatory of Splenic Lymphocytes in Mice [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 1828-1835. |
[5] | CHEN Shaojun, LI Gang, NAI Zida, LIU Di, JIANG Xinpeng. Research and Application of Gene-edited Probiotics in Animal Intestinal Health [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 1016-1024. |
[6] | ZHEN Zhen, WANG Mei, WANG Yimin, HU Debao, ZHANG Linlin, LI Xin, GUO Yiwen, GUO Hong, DING Xiangbin. Effect of RNA Methylation Transfer Enzyme METTL3 on the Proliferation and Myogenic Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 1025-1036. |
[7] | TAN Haoyun, LIU Qian, HU Debao, ZHANG Linlin, LI Xin, DING Xiangbin, GUO Hong, GUO Yiwen. Effects of Interference lnc721 on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3292-3300. |
[8] | WEI Jia, BAI Qin, LUO Xiaolin, GUAN Jiuqiang, AN Tianwu, ZHAO Hongwen, TAN Wu, LI Huade, XIE Rongqing, SHA Quan, JIANG Mingfeng, ZHANG Xiangfei. Effects of Different Weaning Strategies on Growth, Serum Biochemical Indexes and Antioxidant Capacity of Yak Calves [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3400-3410. |
[9] | GAO Jiahao, QIAO Yanjie, LIAN Kexun, WANG Mengmeng, GU Xinli, SHAO Yongbin. Effects of Glycyrrhizic Acid on Immune Performance of Lipopolysaccharide-stressed Yellow Feather Broilers [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3419-3427. |
[10] | WANG Yue, ZHENG Yunxi, XU Songsong, XIANG Guangming, LI Hua, WANG Nan, FENG Zheng, LI Kui, MU Yulian. Regulation of Wip1 Gene on Animal Reproduction and Immunity [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(9): 3500-3507. |
[11] | NIE Jingru, MA Li, YAN Dawei, DENG Jun, ZHANG Hao, ZHANG Bo, LIU Jinqiao, DONG Xinxing. Analysis of Differentially Expressed Genes and Regulation Pathways of Intramuscular Fat Deposition in Large Diqing Tibetan Pigs at Different Growth Stages [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 2855-2868. |
[12] | WU Zhimin, HU Guangling, AO Zheng. Expression of Nutrition Transport-related Genes in Porcine Placenta at Different Gestation Periods [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3062-3071. |
[13] | LIU Rui, LI Jiangling, DU Huarui, YANG Chaowu, CHEN Jialei, ZHAO Sujun, WANG Qiushi. Identification of Immune-Related circRNA of Thymus in Chickens [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(6): 2022-2032. |
[14] | WU Rifu, QU Hao, YAN Xia, LUO Chenglong, WANG Yan, SHU Dingming. Research Progress on the Genetic Regulation Mechanism of Feather Color Traits in Domestic Chickens [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(5): 1806-1816. |
[15] | ZHAI Zhe, CHEN Si, WU Yanru, WANG Xuemei, LI Chongrui, LIU Zhiyong, CHEN Qiaoling, WANG Fengyang, DU Li, LI Chang, JIN Ningyi. Analysis of Promoter Activity and Screening of Transcription Regulatory Elements of CCL19 Gene in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(4): 1213-1222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||