[1] 欧秀琼,李星,钟正泽,等.猪肌肉肌纤维特性与肌肉品质的关系及品种、性别差异[J].新疆农业科学, 2019, 56(12):2345-2352. OU X Q, LI X, ZHONG Z Z, et al.Relationship of muscle fiber characteristics with meat quality and its breed and sex differences in pigs[J].Xinjiang Agricultural Sciences, 2019, 56(12):2345-2352.(in Chinese) [2] 陈映,葛桂华,徐旭,等.品种和肌纤维类型对猪肉质性状的影响[J].中国畜牧杂志, 2020, 56(11):52-55. CHEN Y, GE G H, XU X, et al.Effect of different muscle fiber types on meat quality in pigs[J].Chinese Journal of Animal Science, 2020, 56(11):52-55.(in Chinese) [3] KELLIS M, FELDSER D, CASSADY J P, et al.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J].Nature, 2009, 458(7235):223-227. [4] ABO E A, ALI Y, BASSYOUNI I H, et al.Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients:Correlation with disease activity[J].Clinical and Experimental Medicine, 2019, 19(1):47-53. [5] PAOLETTI A, ROHMER J, LY B, et al.Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to miR-155 and are differentially modulated by different TNF inhibitors[J].Journal of Immunology, 2019, 203(7):1766-1775. [6] YAN H, BU P.Non-coding RNA in cancer[J]. Essays in Biochemistry, 2021, 65(4):625-639. [7] 徐妲,陈璇,罗晓彤,等.snRNA在哺乳动物中基因表达研究进展[J].中国畜牧杂志, 2020, 56(1):39-44. XU D, CHEN X, LUO X T, et al.Research progress on gene expression of small nuclear RNA in mammals[J].Chinese Journal of Animal Science, 2020, 56(1):39-44.(in Chinese) [8] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al.An overview of microRNAs:Biology, functions, therapeutics, and analysis methods[J].Journal of Cellular Physiology, 2019, 234(5):5451-5465. [9] KILIKEVICIUS A, MEISTER G, COREY D R.Reexamining assumptions about miRNA-guided gene silencing[J].Nucleic Acids Research, 2022, 50(2):617-634. [10] TIWARI A, MUKHERJEE B, DIXIT M.microRNA key to angiogenesis regulation:miRNA biology and therapy[J].Current Cancer Drug Targets, 2018, 18(3):266-277. [11] LI Y, YANG M, LOU A, et al.Integrated analysis of expression profiles with meat quality traits in cattle[J].Scientific Reports, 2022, 12(1):5926. [12] YIN L, SHEN X, YIN D, et al.Characteristics of the microRNA expression profile of exosomes released by Vero cells infected with porcine epidemic diarrhea virus[J].Viruses, 2022, 14(4):806. [13] HILL M, TRAN N.miRNA interplay:Mechanisms and consequences in cancer[J].Disease Models&Mechanisms, 2021, 14(4):dmm047662. [14] WU M, YUAN Y, HUANG B, et al.Identification of a TGF-β/SMAD/lnc-UTGF positive feedback loop and its role in hepatoma metastasis[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):441. [15] BROOKE M H, KAISER K K.Three "myosin adenosine triphosphatase" systems:The nature of their pH lability and sulfhydryl dependence[J].Journal of Histochemistry & Cytochemistry, 1970, 18(9):670-672. [16] BROOKE M H, KAISER K K.Muscle fiber types:How many and what kind?[J].Archives of Neurology, 1970, 23(4):369-379. [17] YANNA H, QIN X, YUEYUE C, et al.Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs[J]. Journal of Functional Foods, 2020, 73(2020):104090. [18] MEDLER S.Mixing it up:The biological significance of hybrid skeletal muscle fibers[J].Journal of Experimental Biology, 2019, 222(23):jeb200832. [19] RONNBLOM A, THORNELL L E, SHAH F, et al.Unique fiber phenotype composition and metabolic properties of the stapedius and tensor tympani muscles in the human middle ear[J].Journal of Anatomy, 2023, 243(1):39-50. [20] LARSON L, LIOY J, JOHNSON J, et al.Transitional hybrid skeletal muscle fibers in rat soleus development[J]. Journal of Histochemistry&Cytochemistry, 2019, 67(12):891-900. [21] SCHIAFFINO S.Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies[J].FEBS Journal, 2018, 285(20):3688-3694. [22] UNSIHUAY D, HU H, QIU J, et al.Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types[J]. Chemical Science, 2023, 14(15):4070-4082. [23] AGARWAL M, SHARMA A, KUMAR P, et al.Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development[J].Development (Cambridge, England), 2020, 147(7):dev184507. [24] CHEN P, XU D Q, XU S L, et al.Blebbistatin modulates prostatic cell growth and contrapctility through myosin Ⅱ signaling[J].Clinical Science (London, England), 2018, 132(20):2189-2205. [25] SHEN L, CHEN L, ZHANG S, et al.MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality[J].Meat Science, 2016, 116:201-206. [26] CHEMELLO F, GRESPI F, ZULIAN A, et al.Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle[J].Cell Reports (Cambridge), 2019, 26(13):3784-3797. [27] LIU Y, ZHANG M, SHAN Y, et al.miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome[J].Scientific Reports, 2020, 10(1):10619. [28] XU M, CHEN X, CHEN D, et al.microRNA-499-5p regulates skeletal myofiber specification via NFATc1/MEF2C pathway and Thrap1/MEF2C axis[J].Life Sciences, 2018, 215:236-245. [29] ZHANG S, CHEN X, HUANG Z, et al.Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a[J].British Journal of Nutrition, 2019, 121(1):1-8. [30] D'SOUZA R F, ZENG N, MARKWORTH J F, et al.Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men[J].American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2018, 314(6):R824-R833. [31] HAGIWARA N, YEH M, LIU A.Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice[J].Developmental Dynamics, 2007, 236(8):2062-2076. [32] HONDA M, HIDAKA K, FUKADA S, et al.Vestigial-like 2 contributes to normal muscle fiber type distribution in mice[J].Scientific Reports, 2017, 7(1):7112-7168. [33] QUIAT D, VOELKER K A, PEI J, et al.Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10196-10201. [34] VAN ROOIJ E, QUIAT D, JOHNSON B A, et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J].Developmental Cell, 2009, 17(5):662-673. [35] YANG K, WANG L, ZHOU G, et al.Phytol promotes the formation of slow-twitch muscle fibers through PGC-1α/miRNA but not mitochondria oxidation[J].Journal of Agricultural and Food Chemistry, 2017, 65(29):5916-5925. [36] IWASAKI H, ICHIHARA Y, MORINO K, et al.microRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells[J].Scientific Reports, 2021, 11(1):1161. [37] BJORKMAN K K, GUESS M G, HARRISON B C, et al.miR-206 enforces a slow muscle phenotype[J].Journal of Cell Science, 2020, 133(15):jcs243162. [38] DA PAIXÃO A O, BOLIN A P, SILVESTRE J G, et al.Palmitic acid impairs myogenesis and alters temporal expression of miR-133a and miR-206 in C2C12 myoblasts[J].International Journal of Molecular Sciences, 2021, 22(5):2748. [39] ZHANG D, WANG X, LI Y, et al.Thyroid hormone regulates muscle fiber type conversion via miR-133a1[J].Journal of Cell Biology, 2014, 207(6):753-766. [40] GAN M, SHEN L, LIU L, et al.miR-222 is involved in the regulation of genistein on skeletal muscle fiber type[J].Journal of Nutritional Biochemistry, 2020, 80:108320. [41] ZHANG Y, YANG M, ZHOU P, et al.Beta-hydroxy-beta-methylbutyrate-Induced upregulation of miR-199a-3p contributes to slow-to-fast muscle fiber type conversion in mice and C2C12 cells[J].Journal of Agricultural and Food Chemistry, 2020, 68(2):530-540. [42] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1alpha pathway[J].Journal of Nutritional Biochemistry, 2020, 77:108297. [43] WEN W, CHEN X, HUANG Z, et al.miR-22-3p regulates muscle fiber-type conversion through inhibiting AMPK/SIRT1/PGC-1α pathway[J].Animal Biotechnology, 2021, 32(2):254-261. [44] WEN W, CHEN X, HUANG Z, et al.Resveratrol regulates muscle fiber type gene expression through AMPK signaling pathway and miR-22-3p in porcine myotubes[J].Animal Biotechnology, 2022, 33(3):579-585. [45] XU M, CHEN X, HUANG Z, et al.microRNA-139-5p suppresses myosin heavy chain Ⅰ and Ⅱa expression via inhibition of the calcineurin/NFAT signaling pathway[J].Biochemical and Biophysical Research Communications, 2018, 500(4):930-936. [46] DU J, ZHANG P, ZHAO X, et al.microRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg[J].The FASEB Journal, 2018, 33(2):1911-1926. [47] BRIDGES M C, DAULAGALA A C, KOURTIDIS A.LNCcation:lncRNA localization and function[J].Journal of Cell Biology, 2021, 220(2):e202009045. [48] WOHLWEND M, LAURILA P P, WILLIAMS K, et al.The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging[J].Science Translational Medicine, 2021, 13(623):c7367. [49] DOU M, YAO Y, MA L, et al.The long noncoding RNA MyHC ⅡA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J].The Journal of Biological Chemistry, 2020, 295(15):4937-4949. [50] HE Z Z, ZHAO T, QIMUGE N, et al.COPS3 AS lncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype[J].Cell Signal, 2022, 95:110341. [51] MA M, CAI B, JIANG L, et al.lncRNA-Six1 is a target of miR-1611 that functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis[J].Cells (Basel, Switzerland), 2018, 7(12):243. [52] YU J, WANG Z, YANG X, et al.lncRNA-FKBP1C regulates muscle fiber type switching by affecting the stability of MYH1B[J]. Cell Death Discovery, 2021, 7(1):73. [53] JU X, LIU Y, SHAN Y, et al.Analysis of potential regulatory lncRNAs and circRNAs in the oxidative myofiber and glycolytic myofiber of chickens[J].Scientific Reports, 2021, 11(1):20861. [54] WANG S, TAN B, XIAO L, et al.Comprehensive analysis of long noncoding RNA modified by m6A methylation in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2022, 23(9):4600. [55] WANG J, ZHU S, MENG N, et al.ncRNA-encoded peptides or proteins and cancer[J].Molecular Therapy, 2019, 27(10):1718-1725. [56] CAO H, LIU J, DU T, et al.Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J].Molecular Genetics and Genomics, 2022, 297(1):87-99. [57] LI B, YIN D, LI P, et al.Profiling and functional analysis of circular RNAs in porcine fast and slow muscles[J].Frontiers in Cell and Developmental Biology, 2020, 8:322. [58] SHEN L, GAN M, TANG Q, et al.Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic dpecialization in oxidative and glycolytic skeletal muscles[J].International Journal of Molecular Sciences, 2019, 20(12):2855. [59] GAUTHIER B R, COBO-VUILLEUMIER N, LÓPEZ-NORIEGA L.Roles of extracellular vesicles associated non-coding RNAs in diabetes mellitus[J].Frontiers in Endocrinology, 2022, 13:1057407. [60] WAN X, LIAO J, LAI H, et al.Roles of microRNA-192 in diabetic nephropathy:The clinical applications and mechanisms of action[J].Frontiers in Endocrinology (Lausanne), 2023, 14:1179161. |