1 马艳红,孙慧芳. AmpC酶分类及检测的研究进展[J]. 黑龙江医学,2009,33(3):184~186.2 叶颖子,俞蕙,王晓红,等. 儿童福氏志贺氏菌OXA型β内酰胺酶耐药基因及其耐药性检测[J]. 中国实用儿科杂志,2008,23(9):687~689.3 刘晶. 染色体介导的AmpC酶研究进展[J]. 国际检验医学杂志,2006,27(7):641~643.4 朱东安,孙景勇,范惠清. 上海地区志贺菌耐药性及超广谱β-内酰胺酶的基因型分析[J]. 中国感染与化疗杂志,2009,9(2):126~129.5 朱建美,边锋芝,孙玉国,等. 福氏志贺菌CTX-M型产超广谱β-内酰胺酶的检测及耐药性[J]. 中国微生物学杂志,2012,24(10):907~908.6 纪文静,徐樨巍,董方. 儿科产超广谱β-内酰胺酶志贺菌的基因型和耐药性研究[J]. 中华微生物学和免疫学杂志,2010,30(5):472~476.7 杨海燕,段广才,郗园林,等. 主动外排系统acrAB在志贺菌中分布和表达[J]. 中国公共卫生,2005,21(6):685~687.8 陈宝敏,陈志海,成军,等. 产超广谱β-内酰胺酶细菌感染防治专家共识[J]. 中华实验和临床感染病杂志,2010,4(2):207~213.9 周世娟,钟惠香,陈锦顺,等. 惠东地区产ESBLs大肠埃希菌中TEM型β-内酰胺酶临床研究[J]. 中国医药科学,2012,2(14):17~23.10 郑红青,邓玉婷,何良英,等. 食品动物源产超广谱β-内酰胺酶大肠杆菌的流行状况调查[J]. 中国畜牧兽医,2011,38(12):163~165.11 洛丹婷,多丽波. AmpG在AmpC酶表达中的调控作用及研究进展[J]. 中国实验诊断学,2012,16(1):176~179.12 陶虹,卢体康,唐金明,等. 产CTX-M和TEM型ESBLs耐药大肠埃希菌双重PCR检测方法的建立[J]. 动物医学进展,2013,34(8):7~12.13 高春燕,刘树平,高庆双,等. 儿童弗氏志贺菌产超广谱β-内酰胺酶的基因型分析[J]. 中华医院感染学杂志,2011,21(1):27~29.14 高璐淡,杨钟,武瑞兵,等. 细菌耐药性研究进展[J]. 中国畜牧兽医,2013,40(7):162~166.15 谭文彬. 细菌耐药的基因机制研究进展[J]. 中国病原生物学杂志,2009,4(7):543~544.16 Bae I K, Lee Y N, Lee W G. et al. Novel complex class 1 integron bearing an ISCR1 element in an Escherichia coli isolate carrying the blaCTX-M-14 gene[J]. Antimicrob Agents Chemother, 2007, 51(8): 3017~3019.17 Bonnet R. Crowing group of extended-spectrum β-lactamases: The CTX-M enzymes[J]. Antimicrob Agents Chemother, 2004, 48(1): 1~14.18 Cornaglia G, Giamarellou H, Rossolini G M. Metallo-β-lactamases: A last frontier for β-lactams?[J]. Lancet Infect Dis, 2011, 11(5): 381~393.19 Fankhauser C, Zingg W, Francois P, et al. Surveillance of extended spectrum beta lactamase producing Enterobacteriaceae in a Swiss Tertiary Care Hospital[J]. Swiss Med Wkly, 2009, 139(51~52): 747~751.20 Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases[J]. Antimicrob Agents and Chemother, 2004, 48(7): 2347~2349.21 Ghosh A S, Kar A K, Kundu M. Alterations in high molecular mass penicillin-binding protein 1 associated with beta-lactam resistance in shigella dysenteriae[J]. Biochem Biophys Res Commun, 1998, 248(3): 669~672.22 Gupta S, Mishra B, Muralidharan S, et al. Ceftriaxone resistant Shigella flexneri, an emerging problem[J]. Indian J Med Sci, 2010, 64(12): 553~556.23 Harada S, Ishii Y, Yamaguchi K. Extended-spectrum beta-lactamases: Implications for the clinical laboratory and therapy[J]. Korean J Lab Med, 2008, 28(6): 401~412.24 Jacoby G A. AmpC beta-lactamases[J]. Clinical Microbiology Rev, 2009, 22(1): 161~182.25 Kitao T, Tada T, Tanaka M, et al. Emergence of a novel multidrug-resistant Pseudomonas aeruginosa strain producing IMP-type metallo-beta-lactamases and AAC(6′)-Lae in Japan[J]. Int J Antimicrob Agents, 2012, 39(6): 518~521.26 Kumarasamy K K, Toleman M A, Walsh T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: A molecular, biological, and epidemiological study[J]. Lancet lnfect Dis, 2010, 10(9): 597~602.27 Li R, Li W L, Shi X Y, et al. Cloning, nucleotide sequencing and analysis of gene encoding a PER-1 ESBLs in Acinetobacter baumannii[J]. China Journal of Modem Medicine, 2008, 18(13): 1797~1800.28 Mahapatra S, Basu J, van Beeumen J, et al. Characterization of a 38 kDa penicillin-binding protein and its possible involvement in maintaining stationary-phase cells of shigella dysenteriae[J]. Microbiology, 1994, 140(11): 3177~3182.29 Medeiros A A. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics[J]. Clin Infect Dis, 1997, 24(1): 19~45.30 Meybeck A, Ricard J D, Barnaud G, et al. Incidence and impact on clinical outcome of infections with piperacillin/tazobactam resistant Escherichia coli in ICU: A retrospective study[J]. BMC Infect Dis, 2008, 8(67): 1~7.31 Munday C J, Boyd D A, Brenwald N, et al. Molecular and kinetic comparison of the novel extended-spectrum β-lactamases CTX-M-25 and CTX-M-26[J]. Antimicrob Agents Chemother, 2004, 48(12): 4829~4834.32 Nikaido H. Outer membrane barrier as a mechanism antimicrobial resistance[J]. Antimicrob Agents Chemother, 1989, 33(11): 1831~1836.33 O’Daniel P I, Zajicek J, Zhang W, et al. Elucidation of the structure of the membrane anchor of penicillin-binding protein 5 of Escherichia coli[J]. J Am Chem Soc, 2010, 132(12): 4110~4118.34 Oommen S, Pillai P M, Sushamabai S, et al. Cefotaximase and AmpC-producing Shigella flexneri in case of dysentery from southern India[J]. Indian J Med Microbiol, 2013, 31(1): 77~79.35 Page M G. Extended-spectrum beta-lactamases: Structure and kinetic mechanism[J]. Clin Microbiol Infect, 2008, 14: 63~74.36 Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in gram-negative bacterial pathogens[J]. Int J Med Microbiol, 2010, 300(6): 371~379.37 Poole K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother, 2005, 56(1): 20~51.38 Rolfo F, Marin G H, Silberman M, et al. Epidemiological study of shigellosis in an urban area of Argentina[J]. J Infect Dev Ctries, 2012, 6(4): 324~328.39 Sasirekha B, Shivakumar S. Occurrence of plasmid-mediated AmpC β-lactamases among Escherichia coli and Klebsiella pneumoniae clinical isolates in a tertiary care hospital in Bangalore[J]. Indian J Microbiol, 2012, 52(2): 174~179.40 Traa B S, Walker C L, Munos M, et al. Antibiotics for the treatment of dysentery in children[J]. Int J Epidemiol, 2010, 39(1): 70~74.41 Tuomanen E, Lindquist S, Sande S, et al. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon[J]. Science, 1991, 251(4990): 201~204.42 Verma V, Testro S A, Amini K, et al. Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D-lactamase from Acinetobacter baumannii[J]. J Biol Chem, 2011, 286(43): 37292~37303.43 Vinh H, Baker S, Campbell J, et al. Rapid emergence of third generation cephalosporin resistant Shigella spp. in Southern Vietnam[J]. J Med Microbiol, 2009, 58(2): 281~283.44 Yang H, Duan G, Zhu J, et al. The AcrAB-TolC pump is involved in multidrug resistance in clinical Shigella flexneri isolates[J]. Microb Drug Resist, 2008, 14(4): 245~249. |