[1] DOMINISSINI D,MOSHITCH-MOSHKOVITZ S,SCHWARTZ S,et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-Seq[J].Nature,2012,485(7397):201-206. [2] COKER H,WEI G,BROCKDORFF N.m6A modification of non-coding RNA and the control of mammalian gene expression[J].Biochimica et Biophysica Acta Gene Regulatory Mechanisms,2019,1862(3):310-318. [3] WU B,SU S,PATIL D P,et al.Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1[J].Nature Communications,2018,9(1):420. [4] DIAO L T,XIE S J,LEI H,et al.METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels[J].Biochemical and Biophysical Research Communications,2021,552:52-58. [5] HUANG C,DAI R,MENG G,et al.Transcriptome-wide study of mRNAs and lncRNAs modified by m6A RNA methylation in the longissimus dorsi muscle development of cattle-yak[J].Cells,2022,11(22):3654. [6] WANG D,GUAN H,WANG Y,et al.N6-methyladenosine modification in trophoblasts promotes circSETD2 expression,inhibits miR-181a-5p,and elevates MCL1 transcription to reduce apoptosis of trophoblasts[J].Environmental Toxicology,2023,38(2):422-435. [7] LI D,CAI L,MENG R,et al.METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export[J].International Journal of Molecular Sciences,2020,21(5):1660. [8] GONG H,GONG T,LIU Y,et al.Profiling of N6-methyladenosine methylation in porcine longissimus dorsi muscle and unravelling the hub gene ADIPOQ promotes adipogenesis in an m6A-YTHDF1-dependent manner[J].Journal of Animal Science and Biotechnology,2023,14(1):50. [9] 黄芳芳,周诺.METTL3在RNA m6A甲基化修饰的研究进展[J].生理科学进展,2019,50(6):458-463.HUANG F F,ZHOU N.Advances in METTL3-mediated m6A RNA methylation[J].Advances in Physiological Sciences,2019,50(6):458-463.(in Chinese) [10] BOKAR J A,SHAMBAUGH M E,POLAYES D,et al.Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J].RNA,1997,3(11):1233-1247. [11] WANG P,DOXTADER K A,NAM Y.Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J].Molecular Cell,2016,63(2):306-317. [12] 张鑫鑫.m6A在猪胚胎期和出生后骨骼肌发育过程中的调控作用研究[D].北京:中国农业科学院,2020.ZHANG X X.The regulatory role of N6-methyladenosine in the embryonic and postnatal development of skeletal muscle in pig[D].Beijing:Chinese Academy of Agricultural Sciences,2020.(in Chinese) [13] MA H,WANG X,CAI J,et al.N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation[J].Nature Chemical Biology,2019,15(1):88-94. [14] JIA G,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J].Nature Chemical Biology,2011,7(12):885-887. [15] LAMOND A I,SPECTOR D L.Nuclear speckles:A model for nuclear organelles[J].Nature Reviews:Molecular Cell Biology,2003,4(8):605-612. [16] ZHENG G,DAHL J A,NIU Y,et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J].Molecular Cell,2013,49(1):18-29. [17] LIU Y,ZHOU T,WANG Q,et al.m6A demethylase ALKBH5 drives denervation-induced muscle atrophy by targeting HDAC4 to activate FoxO3 signalling[J].Journal of Cachexia Sarcopenia and Muscle,2022,13(2):1210-1223. [18] UEDA Y,OOSHIO I,FUSAMAE Y,et al.AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J].Scientific Reports,2017,7:42271. [19] ROUNDTREE I A,LUO G Z,ZHANG Z,et al.YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J].eLife,2017,6:31311. [20] WANG X,ZHAO B S,ROUNDTREE I A,et al.N6-methyladenosine modulates messenger RNA translation efficiency[J].Cell,2015,161(6):1388-1399. [21] WANG X,LU Z,GOMEZ A,et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature,2014,505(7481):117-120. [22] SHI H,WANG X,LU Z,et al.YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J].Cell Research,2017,27(3):315-328. [23] YING X,HUANG C,LI T,et al.An RNA methylation-sensitive AIEgen-aptamer reporting system for quantitatively evaluating m6A methylase and demethylase activities[J].ACS Chemical Biology,2024, 19(1):162-172. [24] GROSJEAN H,KEITH G,DROOGMANS L.Detection and quantification of modified nucleotides in RNA using thin-layer chromatography[J].Methods in Molecular Biology,2004,265:357-391. [25] MEYER K D,SALETORE Y,ZUMBO P,et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3'-UTRs and near stop codons[J].Cell,2012,149(7):1635-1646. [26] CHEN Y A,OBLIOSCA J M,LIU Y L,et al.NanoCluster beacons enable detection of a single N6-methyladenine[J].Journal of the American Chemical Society,2015,137(33):10476-10479. [27] HONG T,YUAN Y,WANG T,et al.Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification[J].Chemical Science,2017,8(1):200-205. [28] HU L,LIU S,PENG Y,et al.m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome[J].Nature Biotechnology,2022,40(8):1210-1219. [29] YIN R,CHANG J,LI Y,et al.Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function[J].Cell Stem Cell,2022,29(1):149-159.e7. [30] LIU C,SUN H,YI Y,et al.Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI[J].Nature Biotechnology,2023,41(3):355-366. [31] PARK H S,LEE J,LEE H S,et al.Nuclear mRNA export and aging[J].International Journal of Molecular Sciences,2022,23(10):5451. [32] SHI H,WEI J,HE C.Where,when,and how:Context-dependent functions of RNA methylation writers,readers,and erasers[J].Molecular Cell,2019,74(4):640-650. [33] ZHAO B S,ROUNDTREE I A,HE C.Post-transcriptional gene regulation by mRNA modifications[J].Nature Reviews.Molecular Cell Biology,2017,18(1):31-42. [34] CARROLL S M,NARAYAN P,ROTTMAN F M.N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA[J].Molecular and Cellular Biology,1990,10(9):4456-4465. [35] NAYLER O,HARTMANN A M,STAMM S.The ER repeat protein YT521-B localizes to a novel subnuclear compartment[J].Journal of Cell Biology,2000,150(5):949-962. [36] PING X L,SUN B F,WANG L,et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J].Cell Research,2014,24(2):177-189. [37] BARTOSOVIC M,MOLARES H C,GREGOROVA P,et al.N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing[J].Nucleic Acids Research,2017,45(19):11356-11370. [38] ZHAO X,YANG Y,SUN B F,et al.FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J].Cell Research,2014,24(12):1403-1419. [39] XIAO W,ADHIKARI S,DAHAL U,et al.Nuclear m6A reader YTHDC1 regulates mRNA splicing[J].Molecular Cell,2016,61(4):507-519. [40] TAN B,ZHOU K,LIU W,et al.RNA N6-methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer[J].Theranostics,2022,12(13):5727-5743. [41] CHOE J,LIN S,ZHANG W,et al.mRNA circularization by METTL3-eIF3 h enhances translation and promotes oncogenesis[J].Nature,2018,561(7724):556-560. [42] WEI X,HUO Y,PI J,et al.METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis[J].Nature Cell Biology,2022,24(8):1278-1290. [43] SU R,DONG L,LI Y,et al.METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis[J].Nature Cell Biology,2022,24(2):205-216. [44] YU J,CHEN M,HUANG H,et al.Dynamic m6A modification regulates local translation of mRNA in axons[J].Nucleic Acids Research,2018,46(3):1412-1423. [45] ZHOU J,WAN J,SHU X E,et al.N6-methyladenosine guides mRNA alternative translation during integrated stress response[J].Molecular Cell,2018,69(4):636-647e7. [46] LI A,CHEN Y S,PING X L,et al.Cytoplasmic m6A reader YTHDF3 promotes mRNA translation[J].Cell Research,2017,27(3):444-447. [47] CHEN F,CHEN Z,GUAN T,et al.N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis[J].Cancer Research,2021,81(11):2847-2860. [48] JIANG Z X,WANG Y N,LI Z Y,et al.The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J].Cell Death&Disease,2021,12(8):744. [49] LI X C,JIN F,WANG B Y,et al.The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA[J].Theranostics,2019,9(13):3853-3865. [50] ZHAO S,CAO J,SUN Y,et al.METTL3 promotes the differentiation of goat skeletal muscle satellite cells by regulating MEF2C mRNA stability in a m6A-dependent manner[J].International Journal of Molecular Sciences,2023,24(18):14115. [51] HUANG C S,ZHU Y Q,XU Q C,et al.YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation[J].Clinical and Translational Medicine,2022,12(6):e848. [52] DENG K,LIU Z,LI X,et al.Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J].International Journal of Biological Macromolecules,2023,254(Pt1):127614. [53] HUANG H,WENG H,SUN W,et al.Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J].Nature Cell Biology,2018,20(3):285-295. [54] BERULAVA T,RAHMANN S,RADEMACHER K,et al.N6-adenosine methylation in miRNAs[J].PLoS One,2015,10(2):e0118438. [55] ALARCON C R,LEE H,GOODARZI H,et al.N6-methyladenosine marks primary microRNAs for processing[J].Nature,2015,519(7544):482-485. [56] MA J Z,YANG F,ZHOU C C,et al.METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J].Hepatology,2017,65(2):529-543. [57] ALARCON C R,GOODARZI H,LEE H,et al.HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J].Cell,2015,162(6):1299-1308. [58] XU Y,YE S,ZHANG N,et al.The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J].Cancer Communications,2020,40(10):484-500. [59] PAN T.N6-methyl-adenosine modification in messenger and long non-coding RNA[J].Trends in Biochemical Sciences,2013,38(4):204-209. [60] XIE S J,TAO S,DIAO L T,et al.Characterization of long non-coding RNAs modified by m6A RNA methylation in skeletal myogenesis[J].Frontiers in Cell and Developmental Biology,2021,9:762669. [61] YANG X,ZHANG S,HE C,et al.METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J].Molecular Cancer,2020,19(1):46. [62] YANG D,QIAO J,WANG G,et al.N6-methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J].Nucleic Acids Research,2018,46(8):3906-3920. [63] YU Z L,ZHU Z M.N6-methyladenosine related long non-coding RNAs and immune cell infiltration in the tumor microenvironment of gastric cancer[J].Biological Procedures Online,2021,23(1):15. [64] DI TIMOTEO G,DATTILO D,CENTRON-BROCO A,et al.Modulation of circRNA metabolism by m6A modification[J].Cell Reports,2020,31(6):107641. [65] WANG W,QIAO S C,WU X B,et al.circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation[J].Cell Death&Disease,2021,12(7):628. [66] BRAUN T,GAUTEL M.Transcriptional mechanisms regulating skeletal muscle differentiation,growth and homeostasis[J].Nature Reviews.Molecular Cell Biology,2011,12(6):349-361. [67] LI J,PEI Y,ZHOU R,et al.Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development[J].International Journal of Biological Sciences,2021,17(7):1682-1692. [68] 杨昕冉.mRNA m6A修饰对秦川肉牛骨骼肌成肌细胞增殖分化的作用机制研究[D].杨凌:西北农林科技大学,2022.YANG X R.The role of mRNA m6A modification in the proliferation and differentiation of Qinchuan beef cattle skeletal myoblast[D].Yangling:Northwest A&F University,2022.(in Chinese) [69] ZOU J,SHEN Y,ZOU J,et al.Transcriptome-wide study revealed that N6-methyladenosine participates in regulation meat production in goats[J].Foods,2023,12(6):1159. [70] DOU Y,WEI Y,ZHANG Z,et al.Transcriptome-wide analysis of RNA m6A methylation regulation of muscle development in Queshan Black pigs[J].BMC Genomics,2023,24(1):239. [71] ZHANG D,WU S,ZHANG X,et al.Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs[J].Journal of Animal Science and Biotechnology,2022,13(1):146. [72] GHELLER B J,BLUM J E,FONG E H H,et al.A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions[J].Cell Death Discovery,2020,6(1):95. [73] YANG X,NING Y,ABBAS RAZA S H,et al.MEF2C expression is regulated by the post-transcriptional activation of the METTL3-m6A-YTHDF1 axis in myoblast differentiation[J].Frontiers in Veterinary Science,2022,9:900924. [74] YANG X,MEI C,MA X,et al.m6A methylases regulate myoblast proliferation,apoptosis and differentiation[J].Animals (Basel),2022,12(6):773. [75] PETROSINO J M,HINGER S A,GOLUBEVA V A,et al.The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice[J].Nature Communications,2022,13(1):168. [76] TAN B,ZENG J,MENG F,et al.Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles[J].BMC Genomics,2022,23(1):804. [77] 杨昕冉,马鑫浩,杜嘉伟,等.m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J].中国农业科学,2023,56(1):165-178.YANG X R,MA X H,DU J W,et al.Expression pattern of m6A methylase-related genes in bovine skeletal muscle myogenesis[J].Scientia Agricultura Sinica,2019,56(1):165-178.(in Chinese) [78] 束婧婷,单艳菊,姬改革,等.广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J].中国农业科学,2022,55(3):589-601.SHU J T,SHAN Y J,JI G G,et al.Relationship between expression levels of Guangxi Partridge chicken m6A methyltransferase genes,myofiber types and myogenic differentiation[J]. Scientia Agricultura Sinica,2019,55(3):589-601.(in Chinese) [79] 庞立川,单艳菊,刘一帆,等.METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J].畜牧兽医学报,2023,54(2):545-553.PANG L C,SHAN Y J,LIU Y F,et al.Expression of METTL16 in different types of chicken muscle and its regulatory role in chicken skeletal muscle function[J].Acta Veterinaria et Zootechnica Sinica,2019,54(2):545-553.(in Chinese) [80] DINA C,MEYRE D,GALLINA S,et al.Variation in FTO contributes to childhood obesity and severe adult obesity[J].Nature Genetics,2007,39(6):724-726. [81] FISCHER J,KOCH L,EMMERLING C,et al.Inactivation of the FTO gene protects from obesity[J].Nature,2009,458(7240):894-898. [82] 任祖凤,顾浩,胡康洪,等.m6A去甲基化酶FTO对猪肌卫星细胞分化的影响[J].中国畜牧兽医,2023,50(7):2777-2788.REN Z F,GU H,HU K H,et al.Effect of m6A demethylase enzyme FTO on differentiation of porcine muscle satellite cells[J].China Animal Husbandry&Veterinary Medicine,2023,50(7):2777-2788.(in Chinese) [83] DENG K,FAN Y,LIANG Y,et al.FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J].Molecular Therapy Nucleic Acids,2021,26:34-48. [84] WANG X,HUANG N,YANG M,et al.FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis[J].Cell Death&Disease,2017,8(3):e2702. [85] WANG Z,JU X,LI K,et al.MeRIP sequencing reveals the regulation of N6-methyladenosine in muscle development between hypertrophic and leaner broilers[J].Poultry Science,2024,103(6):103708. [86] ZHANG X,YAO Y,HAN J,et al.Longitudinal epitranscriptome profiling reveals the crucial role of N6-methyladenosine methylation in porcine prenatal skeletal muscle development[J].Journal of Genetics and Genomics,2020,47(8):466-476. [87] QIAO Y,SUN Q,CHEN X,et al.Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export[J].eLife,2023,12:e82703. [88] DENG K,LIU Z,LI X,et al.Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J].International Journal of Biological Macromolecules,2024,254(Pt1):127614. [89] ZHAO T,ZHAO R,YI X,et al.METTL3 promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2 signaling axis in myoblasts[J].Life Sciences,2022,298:120496. [90] KUDOU K,KOMATSU T,NOGAMI J,et al.The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation[J].Open Biology,2017,7(9):170119. [91] CHEN B,LIU S,ZHANG W,et al.Profiling analysis of N6-methyladenosine mRNA methylation reveals differential m6A patterns during the embryonic skeletal muscle development of ducks[J].Animals (Basel),2022,12(19):2593. [92] KRUGER N,BIWER L A,GOOD M E,et al.Loss of endothelial FTO antagonizes obesity-induced metabolic and vascular dysfunction[J].Circulation Research,2020,126(2):232-242. |