中国畜牧兽医 ›› 2022, Vol. 49 ›› Issue (8): 2931-2942.doi: 10.16431/j.cnki.1671-7236.2022.08.009
喻宗岗1, 马海明1,2
收稿日期:
2022-03-27
出版日期:
2022-08-05
发布日期:
2022-07-21
通讯作者:
马海明
E-mail:mahaiming2000@163.com
作者简介:
喻宗岗,E-mail:study236@163.com。
基金资助:
YU Zonggang1, MA Haiming1,2
Received:
2022-03-27
Online:
2022-08-05
Published:
2022-07-21
摘要: 猪骨骼肌是动物机体重要的运动组织及人类主要的肉食来源,也是研究肌肉生长发育和疾病的良好模型。猪出生后,骨骼肌的生长发育、损伤修复都需要肌卫星细胞的参与,体外分离培养猪骨骼肌卫星细胞是深入研究骨骼肌生长发育及疾病发生机理的基础,是在细胞水平进行分子功能验证的前提。随着肌肉发育和病理分子机制研究的不断深入,猪骨骼肌卫星细胞的体外分离培养技术也迅速发展起来。背最长肌、后腿肌和半腱肌常用于分离骨骼肌卫星细胞,1日龄猪背最长肌的分离效果最好。常用于分离骨骼肌卫星细胞的酶包括链酶蛋白酶、胶原酶、胰蛋白酶、胶原蛋白酶等,各酶及酶联合消化的时间不同,最优的过滤方式是200目+400目联合过滤,3次离心法可获得纯度较高的细胞。常使用的培养基为DMEM/F12+10%胎牛血清(FBS)+1%青-链霉素(P/S)。骨骼肌肌卫星细胞常见标记物有配对盒基因3(PAX3)、PAX7、生肌决定因子5(Myf5)、Myf4、肌分化因子(MyoD)、肌细胞生成素(MyoG)等。作者通过对猪骨骼肌肌卫星细胞的分离、培养及鉴定等方面进行综述,梳理出各步骤中最佳参数,为建立规范猪骨骼肌卫星细胞分离程序提供参考,以期为肌肉发育和疾病研究提供理论及技术支持。
中图分类号:
喻宗岗, 马海明. 猪骨骼肌卫星细胞体外分离培养研究进展[J]. 中国畜牧兽医, 2022, 49(8): 2931-2942.
YU Zonggang, MA Haiming. Research Progress on Isolation and Culture of Porcine Skeletal Muscle Satellite Cells in vitro[J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 2931-2942.
[1] GROENEN M A,ARCHIBALD A L,UENISHI H,et al.Analyses of pig genomes provide insight into porcine demography and evolution[J].Nature,2012,491(7424):393-398. [2] NAKAMURA A,TAKEDA S.Mammalian models of duchenne muscular dystrophy:Pathological characteristics and therapeutic applications[J].Journal of Biomedicine&Biotechnology,2011,2011:184393-184400. [3] KLYMIUK N,BLUTKE A,GRAF A,et al.Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle[J].Human Molecular Genetics,2013,22(21):4368-4382. [4] YANG J,LIU H,WANG K,et al.Isolation,culture and biological characteristics of multipotent porcine skeletal muscle satellite cells[J].Cell and Tissue Banking,2017,18(4):513-525. [5] VERDIJK L B,SNIJDERS T,DROST M,et al. Satellite cells in human skeletal muscle;From birth to old age[J].Age (Dordrecht,Netherlands),2014,36(2):545-547. [6] FARUP J,RAHBEK S K,RIIS S,et al.Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth[J].Journal of Applied Physiology,2014,117(8):898-909. [7] ZHAO X,ZHU R,WANG Y,et al.Differentiation proliferative capacity of skeletal muscle satellite cells from Dapulian and Landrace pigs[J].Italian Journal of Animal Science,2020,19(1):574-585. [8] HAWKE T,GARRY D.Myogenic satellite cells:Physiology to molecular biology[J].Journal of Applied Physiology,2001,91(2):534-551. [9] MCCARTHY J J,MULA J,MIYAZAKI M,et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle[J].Development (Cambridge),2011,138(17):3657-3666. [10] LEPPER C,PARTRIDGE T A,FAN C M.An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration[J].Development,2011,138(17):3639-3646. [11] METZGER K,TUCHSCHERER A,PALIN M,et al. Establishment and validation of cell pools using primary muscle cells derived from satellite cells of pig skeletal muscle[J].In Vitro Cellular&Developmental Biology-Animal,2020,56(3):193-199. [12] MAURO A.Satellite cell of skeletal muscle fibers[J].The Journal of Biophysical and Biochemical Cytology,1961,9(2):493-495. [13] KATZ B.The terminations of the afferent nervefibre in the muscle spindle of the frog[J].Philosophical Transactions of the Royal Society of London,1961,243(703):221-240. [14] GIBSON M C,SCHULTZ E.Age-related differences in absolute numbers of skeletal muscle satellite cells[J].Muscle&Nerve,1983,6(8):574-580. [15] YOSHIOKA K,KITAJIMA Y,OKAZAKI N,et al.A modified pre-plating method for high-yield and high-purity muscle stem cell isolation from human/mouse skeletal muscle tissues[J].Frontiers in Cell and Developmental Biology,2020,8:793. [16] DOUMIT M E,MERKEL R A.Conditions for isolation and culture of porcine myogenic satellite cells[J].Tissue Cell,1992,24(2):253-262. [17] BEKOFF A,BETZ W.Properties of isolated adult rat muscle fibres maintained in tissue culture[J].Journal of Physiology,1977,271(2):537-547. [18] WILSCHUT K J,TJIN E P M,HAAGSMAN H P,et al.Approaches to isolate porcine skeletal muscle stem and progenitor cells[J].Protocol Exchange,2015.DOI:10.5281/zenodO.15596. [19] BRINKMEIER H,SEEWALD M J,EICHINGER H M,et al.Culture conditions for the production of porcine myotubes and myoballs[J].Journal of Animal Science,1993,71(5):1154-1160. [20] 刘月光,史新娥,沈清武,等.利用单根肌纤维法分离和培养猪骨骼肌卫星细胞及其成肌诱导分化[J].农业生物技术学报,2011,19(5):856-863. LIU Y G,SHI X E,SHEN Q W,et al.Isolation and culture of porcine skeletal muscle satellite cells by single muscle fiber and their muscle differentiation[J].Journal of Agricultural Biotechnology,2011,19(5):856-863.(in Chinese) [21] 罗桂芬,文旭辉,杨公社.猪肌卫星细胞的分离培养及鉴定[J].细胞与分子免疫学杂志,2006,6:823-825. LUO G F,WEN X H,YANG G S.Isolation,culture and identification of porcine muscle satellite cells[J].Chinese Journal of Cellular and Molecular Immunology,2006,6:823-825.(in Chinese) [22] 吕晓,朱海鲸,曹晖,等.猪肌肉卫星细胞的分离培养及生物学特性鉴定[J].中国兽医学报,2011,31(10):1480-1484. LYU X,ZHU H J,CAO H,et al.Isolation,culture and identification of biological characteristics of porcine muscle satellite cells[J].Chinese Journal of Veterinary Science,2011,31(10):1480-1484.(in Chinese) [23] SEBASTIAN S,GOULDING L,KUCHIPUDI S V,et al.Extended 2D myotube culture recapitulates postnatal fibre type plasticity[J].BMC Cell Biology,2015,16(1):23-32. [24] MIERSCH C,STANGE K,ROENTGEN M.Effects of trypsinization and of a combined trypsin,collagenase,and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles[J].In Vitro Cellular&Developmental Biology-Animal,2018,54(6):406-412. [25] LI B,LI P,HUANG R,et al.Isolation,culture and identification of porcine skeletal muscle satellite cells[J].Asian-Australasian Journal of Animal Sciences,2015,28(8):1171-1177. [26] MIERSCH C,STANGE K,ROENTGEN M. Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous percoll density gradient centrifugation[J].BMC Cell Biology,2018,19(1):2-13. [27] CHOI K,YOON J W,KIM M,et al.Optimization of culture conditions for maintaining pig muscle stem cells in vitro[J].Food Science of Animal Resources,2020,40(4):659-667. [28] STANGE K,AHRENS H E,VON MALTZAHN J,et al.Isolation and ex vivo cultivation of single myofibers from porcine muscle[J].In Vitro Cellular&Developmental Biology-Animal,2020,56(8):585-592. [29] LI J,SU T,ZOU C,et al.Long non-coding RNA H19 regulates porcine satellite cell differentiation through miR-140-5p/SOX4 and DBN1[J].Frontiers in Cell and Developmental Biology,2020,8:518724. [30] PALIN M F,LAPOINTE J,GARIÉPY C,et al. Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions[J].PLoS One,2020,15(9):e239496. [31] VAUGHN M A,PHELPS K J,GONZALEZ J M. In vitro supplementation with the porcine plasma product,betaGRO®,stimulates activity of porcine fetal myoblasts and neonatal satellite cells in a divergent manner[J].Animal,2018,12(9):1912-1920. [32] KHATRI O S,VAUGHN M A,PHELPS K J,et al.In vitro betaGRO® supplementation stimulates myogenesis of porcine fetal myoblasts and porcine satellite cells in a divergent manner[J].Journal of Animal Science,2017,954:157. [33] YAN J,GAN L,YANG H,et al.The proliferation and differentiation characteristics of co-cultured porcine preadipocytes and muscle satellite cells in vitro[J].Molecular Biology Reports,2013,40(4):3197-3202. [34] DING S,WANG F,LIU Y,et al.Characterization and isolation of highly purified porcine satellite cells[J].Cell Death Discovery,2017,3(2017):17003-17013. [35] LEWIS F C,HENNING B J,MARAZZI G,et al.Porcine skeletal muscle-derived multipotent PW1(pos)/Pax7(neg) interstitial cells:Isolation,characterization,and long-term culture[J].Stem Cells Translational Medicine,2014,3(6):702-712. [36] KIM K,KIM D,MIN Y,et al.Myogenic regulatory factors are key players in determining muscle mass and meat quality in Jeju native and Berkshire pigs[J].Veterinary Medicine and Science,2021,7(3):735-745. [37] WANG X,YANG W,YANG Z,et al.The differential proliferative ability of satellite cells in Lantang and Landrace pigs[J].PLoS One,2012,7(3):e32537. [38] DOUMIT M E,MERKEL R A.Conditions for isolation and culture of porcine myogenic satellite cells[J].Tissue&Cell,1992,24(2):253-262. [39] BAQUERO-PEREZ B,KUCHIPUDI S V,NELLI R K,et al.A simplified but robust method for the isolation of avian and mammalian muscle satellite cells[J].BMC Cell Biology,2012,13(1):16-27. [40] CHEN Y,ZHU H,MCCAULEY S R,et al. Diminished satellite cell fusion and S6K1 expression in myotubes derived from skeletal muscle of low birth weight neonatal pigs[J].Physiological Reports,2017,5(3):e13075. [41] DENG B,ZHANG F,WEN J,et al.The transcriptomes from two adipocyte progenitor cell types provide insight into the differential functions of MSTN[J].Genomics,2020,112:3826-3836. [42] KHATRI O S,VAUGHN M A,PHELPS K J,et al. In vitro betaGRO® supplementation stimulates myogenesis of porcine fetal myoblasts and porcine satellite cells in a divergent manner[J].Journal of Animal Science,2017,954:157. [43] MIERSCH C,STANGE K,HERING S,et al. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile[J].Scientific Reports,2017,7(1):45052. [44] STANGE K,MIERSCH C,SPONDER G,et al.Low birth weight influences the postnatal abundance and characteristics of satellite cell subpopulations in pigs[J].Scientific Reports,2020,10(61491):6149-6162. [45] SUN Y,QIN J,LIU S,et al.PDGFR alpha regulated by miR-34a and FoxO1 promotes adipogenesis in porcine intramuscular preadipocytes through Erk signaling pathway[J].International Journal of Molecular Sciences,2017,18(11):2424-2436. [46] CHU W,WEI W,HAN H,et al.Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue[J].Scientific Reports,2017,7(510):510-522. [47] MILNER D J,BIONAZ M,MONACO E,et al. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue[J].Cell and Tissue Research,2018,372(3):507-522. [48] WANG S,SUN Y,REN R,et al.H3K27me3 depletion during differentiation promotes myogenic transcription in porcine satellite cells[J].Genes,2019,10(2313):231-243. [49] REDSHAW Z,LOUGHNA P T.Adipogenic differentiation of muscle derived cells is repressed by inhibition of GSK-3 activity[J].Frontiers in Veterinary Science,2018,5:110-115. [50] LV W,JIN J,XU Z,et al.lncMGPF is a novel positive regulator of muscle growth and regeneration[J].Journal of Cachexia Sarcopenia and Muscle,2020,11(6):1723-1746. [51] QIU K,XU D,WANG L,et al.Association analysis of single-cell RNA sequencing and proteomics reveals avital role of Ca2+ signaling in the determination of skeletal muscle development potential[J].Cells,2020,9(4):1045-1065. [52] WANG S,XU X,LIU Y,et al.RIP-Seq of EZH2 identifies TCONS-00036665 as a regulator of myogenesis in pigs[J].Frontiers in Cell and Developmental Biology,2021,8:618617. [53] WANG D,GAO C Q,CHEN R Q,et al.Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells[J].Oncotarget,2016,7(21):30845-30854. [54] RICCOBONO D,AGAY D,FRANCOIS S,et al. Contribution of intramuscular autologous adipose tissue-derived stem cell injections to treat cutaneous radiation syndrome:Preliminary results[J].Health Physics,2016,111(2):117-126. [55] YU Q P,FENG D Y,HE X J,et al.Effects of a traditional Chinese medicine formula and its extraction on muscle fiber characteristics in finishing pigs,porcine cell proliferation and isoforms of myosin heavy chain gene expression in myocytes[J].Asian-Australasian Journal of Animal Sciences,2017,30(11):1620-1632. [56] CHEN X,LUO Y,HUANG Z,et al.Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways[J].Scientific Reports,2017,7:45156. [57] HOU L,XU J,JIAO Y,et al.miR-27b promotes muscle development by inhibiting MDFI expression[J].Cellular Physiology and Biochemistry,2018,46(6):2271-2283. [58] LI L,CHENG X,CHEN L,et al.Long noncoding ribonucleic acid MSTRG.59589 promotes porcine skeletal muscle satellite cells differentiation by enhancing the function of PALLD[J].Frontiers in Genetics,2019,10:1220. [59] CHEN X,XIANG L,JIA G,et al.Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells[J].Animal Science Journal,2019,90(2):255-263. [60] JIN C,ZHANG Z,SONG Z,et al.mTORC1-mediated satellite cell differentiation is required for lysine-induced skeletal muscle growth[J].Journal of Agricultural and Food Chemistry,2020,68(17):4884-4892. [61] HONG Q D,XU G,HOU L,et al.microRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle[J].Journal of Integrative Agriculture,2020,19(1):225-233. [62] SONG Z,JIN C,YE M,et al.JAK2-STAT3 pathway mediated satellite cell apoptosis to govern skeletal muscle growth with lysine[J].Journal of Animal Science,2020,984:334. [63] YANG R,LIU Y,CHENG Y,et al.Effects and molecular mechanism of single-nucleotide polymorphisms of MEG3 on porcine skeletal muscle development[J].Frontiers in Genetics,2021,12:607910-607921. [64] DOU M,YAO Y,MA L,et al.The long noncoding RNA MyHC IIA/X-AS contributes to skeletal muscle myogenesis and maintains the fast fiber phenotype[J].Journal of Biological Chemistry,2020,295(15):4937-4949. [65] CHEN X,ZHAO C,DOU M,et al.Deciphering the miRNA transcriptome of Rongchang pig longissimus dorsi at weaning and slaughter time points[J].Journal of Animal Physiology and Animal Nutrition,2020,104(3):954-964. [66] WANG X Y,CHEN X L,HUANG Z Q,et al. microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J].Animal,2017,11(12):2268-2274. [67] SUN W,HE T,QIN C,et al.A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle[J].Scientific Reports,2017,7:44133-44146. [68] ZHANG X,SUN W,HE L,et al.Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs[J].Stem Cell Research&Therapy,2020,11(1):536-550. [69] BURTON N M,VIERCK J,KRABBENHOFT L,et al. Methods for animal satellite cell culture under a variety of conditions[J].Methods in Cell Science,2000,22(1):51-61. [70] TAN Y,JIN Y,WANG S,et al.The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells[J].Journal of Muscle Research and Cell Motility,2020,42(2):203-217. [71] LEWIS F C,HENNING B J,MARAZZI G,et al. Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells:Isolation,characterization,and long-term culture[J].Stem Cells Translational Medicine,2014,3(6):702-712. [72] JIAO Y,HUANG B,CHEN Y,et al.Integrated analyses reveal overexpressed Notch1 promoting porcine satellite cells'proliferation through regulating the cell cycle[J].International Journal of Molecular Sciences,2018,19(1):271-300. [73] WANG S,XU X,LIU Y,et al.RIP-Seq of EZH2 identifies TCONS-00036665 as a regulator of myogenesis in pigs[J].Frontiers in Cell and Developmental Biology,2020,8:618617. [74] 孙红梅,杨公社,孙超.猪前体脂肪细胞与肌卫星细胞体外联合培养[J].农业生物技术学报,2007,15(4):617-621. SUN H M,YANG G S,SUN C.Co-culture of preadipocytes and myogenic satellite cells in porcine[J].Journal of Agricultural Biotechnology,2007,15(4):617-621.(in Chinese) [75] LI Y,LI F,LIN B,et al.Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes[J].Molecular Biology Reports,2014,41(11):7543-7553. [76] GASTER M,BECK-NIELSEN H,SCHRODER H D.Proliferation conditions for human satellite cells.The fractional content of satellite cells[J].APMIS:Acta Pathologica,Microbiologica,et Immunologica Scandinavica,2001,109(11):726-734. [77] WILSCHUT K J,HAAGSMAN H P,ROELEN B A.Extracellular matrix components direct porcine muscle stem cell behavior[J].Experimental Cell Research,2010,316(3):341-352. [78] DUMONT N A,BENTZINGER C F,SINCENNES M,et al. Satellite cells and skeletal muscle regeneration[J].Comprehensive Physiology,2015,5(3):1027-1059. [79] FUKADA S,UEZUMI A,IKEMOTO M,et al. Molecular signature of quiescent satellite cells in adult skeletal muscle[J].Stem Cells,2007,25(10):2448-2459. [80] GNOCCHI V F,WHITE R B,ONO Y,et al.Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells[J].PLoS One,2009,4(4):e5205. [81] GAO C Q,XU Y L,JIN C L,et al.Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets[J].Oncotarget,2017,8(26):43192-43200. [82] MURRAY R L,ZHANG W,IWANIUK M,et al.Dietary tributyrin,an HDAC inhibitor,promotes muscle growth through enhanced terminal differentiation of satellite cells[J].Physiological Reports,2018,6(10):e13706. [83] LI L,CHEN Y,NIE L,et al.MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells[J].Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2019,1862(8):807-821. [84] VAUGHN M A,PHELPS K J,GONZALEZ J M. In vitro supplementation with the porcine plasma product,betaGRO®,stimulates activity of porcine fetal myoblasts and neonatal satellite cells in a divergent manner[J].Animal,2018,12(9):1912-1920. [85] WANG S,SUN Y,REN R,et al.H3K27me3 depletion during differentiation promotes myogenic transcription in porcine satellite cells[J].Genes,2019,10(3):231-243. |
[1] | 陈楷文, 赵云娇, 王磊, 张剑搏, 马玉红, 吴国芳. 不同氧浓度下猪睾丸间质细胞转录组分析[J]. 中国畜牧兽医, 2023, 50(6): 2185-2195. |
[2] | 韦明邦, 边巴琼达, 肖青青, 段梦琪, 强巴央宗, 商鹏. 藏猪CDKN1B基因克隆、生物信息学及表达分析[J]. 中国畜牧兽医, 2023, 50(6): 2196-2206. |
[3] | 张方玮, 张琪, 雷亮亮, 孙武胜, 张迪, 张云鹏, 张净搏, 王修权, 张晶, 张树敏. 松辽黑猪HBEGF基因多态性及其与繁殖性状的关联分析[J]. 中国畜牧兽医, 2023, 50(6): 2370-2379. |
[4] | 孙守湖, 陈志飞, 郭智轩, 俞婷, 王修武, 李松倍, 魏文康, 贺东生. 3种猪冠状病毒N基因密码子偏好性及宿主适应机制研究[J]. 中国畜牧兽医, 2023, 50(6): 2403-2413. |
[5] | 曹琪, 金清, 袁意, 冯逸雪, 孔丹妮, 陈翔鸿, 吴斌, 宋文博, 汤细彪. 规模化猪场常见呼吸道细菌性病原的流行病学调查[J]. 中国畜牧兽医, 2023, 50(6): 2439-2449. |
[6] | 史秋颖, 段宝敏, 李颖, 牛登云, 耿晨阳, 周佳伟, 王蕊, 冯敬敬. 2020—2021年中国部分地区猪流行性腹泻病毒S1基因遗传变异分析[J]. 中国畜牧兽医, 2023, 50(6): 2468-2478. |
[7] | 欧云文, 潘琴, 汪洋, 代军飞, 任绍科, 张洋, 张杰. 猪细小病毒6型ORF2基因的截短表达及多克隆抗体制备[J]. 中国畜牧兽医, 2023, 50(6): 2487-2495. |
[8] | 刘鹏, 李静静, 乔彦良, 朱连勤, 朱风华. 黄芩多糖的提取及结构表征[J]. 中国畜牧兽医, 2023, 50(6): 2518-2530. |
[9] | 卢玉葵, 刘佳琪, 钟嘉诚, 陈济铛, 朱婉君, 张溢珊, 张济培. 鹅源副鸡禽杆菌的分离鉴定及致病性研究[J]. 中国畜牧兽医, 2023, 50(6): 2562-2572. |
[10] | 潘鹏丞, 雷宗全, 李显, 胡湘云, 秦谦涛, 覃兆鲜, 关志惠, 陈宝剑, 谢炳坤. 陆川猪MYL2基因生物信息学分析、真核表达载体构建及组织表达研究[J]. 中国畜牧兽医, 2023, 50(5): 1796-1806. |
[11] | 欧阳坤, 魏立民, 孙瑞萍, 解娅立, 齐琪, 李想, 刘圈炜, 晁哲, 张永亮, 陈婷. 姜黄素对海南屯昌猪生长性能、饲料养分表观消化率和血清生化指标的影响[J]. 中国畜牧兽医, 2023, 50(5): 1867-1875. |
[12] | 吴静璇, 孙征, 马雪莲, 张丽阳, 廖秀冬, 罗绪刚, 李素芬, 吕林. 中国畜禽饲料资源中镁含量的调查研究[J]. 中国畜牧兽医, 2023, 50(5): 1888-1898. |
[13] | 黎明国, 李清春, 陈鑫, 卢世豪, 何凡, 祁梦凡, 张化鹏, 任玉军, 张庆泽, 符彬彬, 徐梦思, 艾子凯, 闫坤, 冯赟, 华再东, 黄涛, 毕延震. TET去甲基化酶对猪卵母细胞发育的影响[J]. 中国畜牧兽医, 2023, 50(5): 1907-1917. |
[14] | 王泽平, 王飞飞, 张芮铭, 付言峰, 赵为民, 戴超辉, 程金花, 廖超, 李辉. 苏紫猪SLA-1基因多态性及其抗病潜能分析[J]. 中国畜牧兽医, 2023, 50(5): 1918-1927. |
[15] | 宋承磊, 张哲, 韦怡林, 杨松柏, 豆雅晴, 李晨雷, 刘蓥珂, 李新建, 杨峰, 李秀领, 王克君, 乔瑞敏, 韩雪蕾. 不同品种、季节和月龄对公猪精液品质的影响[J]. 中国畜牧兽医, 2023, 50(5): 1938-1946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||