[1] GALLARDO M C, REOYO A D, FERNANDEZ J, et al. African swine fever:A global view of the current challenge[J]. Porcine Health Management, 2015, 1:21. [2] REVILLA Y, PEREZ-NUNEZ D, RICHT J A.African swine fever virus biology and vaccine approaches[J]. Advances in Virus Research, 2018, 100:41-74. [3] 王清华, 任炜杰, 包静月, 等.我国首例非洲猪瘟的确诊[J]. 中国动物检疫, 2018, 35(9):1-4. WANG Q H, REN W J, BAO J Y, et al. The first outbreak of African swine fever was confirmed in China[J]. China Animal Health Inspection, 2018, 35(9):1-4.(in Chinese) [4] GUINAT C, GOGIN A, BLOME S, et al. Transmission routes of African swine fever virus to domestic pigs:Current knowledge and future research directions[J]. Veterinary Record, 2016, 178(11):262-267. [5] OLESEN A S, LOHSE L, BOKLUND A, et al. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes[J]. Veterinary Microbiology, 2017, 211:92-102. [6] BOSCH-CAMOS L, LOPEZ E, RODRIGUEZ F.African swine fever vaccines:A promising work still in progress[J]. Porcine Health Management, 2020, 6:17. [7] DIXON L K, CHAPMAN D A G, NETHERTON C L, et al. African swine fever virus replication and genomics[J]. Virus Research, 2013, 173(1):3-14. [8] JIA N, OU Y, PEJSAK Z, et al. Roles of African swine fever virus structural proteins in viral infection[J]. Journal of Veterinary Research, 2017, 61(2):135-143. [9] 马兴树, 宋金祥.非洲猪瘟病毒免疫及基因工程疫苗研究进展[J]. 中国畜牧兽医, 2019, 46(11):3404-3413. MA X S, SONG J X.Research progress on immune response and genetic engineering vaccines against African swine fever virus[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(11):3404-3413.(in Chinese) [10] TAKAMATSU H H, DENYER M S, LACASTA A, et al. Cellular immunity in ASFV responses[J]. Virus Research, 2012, 173(1):110-121 [11] GOMEZPUERTAS P, RODRIGUEZ F, OVIEDO J M, et al. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization[J]. Journal of Virology, 1996, 70(8):5689-5694. [12] HERNAEZ B, DIAZ-GIL G, GARCIA-GALLO M, et al. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis[J]. FEBS Letters, 2004, 569(1-3):224-228. [13] 王彩霞, 冯春燕, 杜方原, 等.非洲猪瘟病毒主要抗原p54-1的原核表达及多克隆抗体的制备与鉴定[J]. 中国畜牧兽医, 2018, 45(10):2823-2830. WANG C X, FENG C Y, DU F Y, et al. Prokaryotic expression of African swine fever virus p54-1 and preparation and characterization of its polyclonal antibody[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(10):2823-2830.(in Chinese) [14] BARDERAS M G, RODRIGUEZ F, GOMEZ-PUERTAS P, et al. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins[J]. Archives of Virology, 2001, 146(9):1681-1691. [15] GOMEZ-PUERTAS P, RODRIGUEZ F, OVIEDO J M, et al. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response[J]. Virology, 1998, 243(2):461-471. [16] 马玉腾, 韩玉莹, 金鑫, 等.非洲猪瘟疫苗研究进展及其难点和突破点[J]. 中国预防兽医学报, 2021, 43(2):219-225. MA Y T, HAN Y Y, JIN X, et al. Research progress, difficulties and breakthrough points of African swine fever vaccine[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(2):219-225.(in Chinese) [17] HVBNER A, KEIL G M, KABUUKA T, et al. Efficient transgene insertion in a Pseudorabies virus vector by CRISPR/Cas9 and marker rescue-enforced recombination[J]. Journal of Virological Methods, 2018, 262:38-47. [18] NEILAN J G, ZSAK L, LU Z, et al. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 2004, 319(2):337-342. [19] LOKHANDWALA S, PETROVAN V, POPESCU L, et al. Adenovirus-vectored African swine fever virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate[J]. Veterinary Microbiology, 2019, 235:10-20. [20] GOATLEY L C, REIS A L, PORTUGAL R, et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease[J]. Vaccines, 2020, 8(2):234. [21] 李文桂, 陈雅棠.重组伪狂犬病毒疫苗研制现状[J]. 生物技术通讯, 2018, 29(5):691-700. LI W G, CHEN Y T.Research status of recombinant Pseudorabies virus vaccine[J]. Letters in Biotechnology, 2018, 29(5):691-700.(in Chinese) [22] ARGILAGUET J M, PEREZ-MARTIN E, LOPEZ S, et al. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus[J]. Antiviral Research, 2013, 98:61-65. [23] 王印.猪Ⅱ型圆环病毒-伪狂犬重组病毒活疫苗SA215(C)株的构建及其部分生物学特性研究[D].雅安:四川农业大学, 2006. WANG Y.Construction of recombinant Pseudorabies virus-Porcine circovirus type 2 live vaccine SA215(C) strain and study on some of its biological characteristics[D].Ya'an:Sichuan Agricultural University, 2006.(in Chinese) [24] CHEN Y, GUO W, XU Z, et al. A novel recombinant Pseudorabies virus expressing parvovirus VP2 gene:Immunogenicity and protective efficacy in swine[J]. Virology Journal, 2011, 8(1):307. [25] 刘琥.表达猪流感H1N1HA基因和NA基因的重组伪狂犬毒株的构建[D].武汉:华中农业大学, 2008. LIU H.Construction of recombinant Pseudorabies virus expressing both HA and NA gene of a Swine influenza virus H1N1[D].Wuhan:Huazhong Agricultural University, 2008.(in Chinese) [26] YE C, ZHANG Q Z, TIAN Z J, et al. Genomic characterization of emergent Pseudorabies virus in China reveals marked sequence divergence:Evidence for the existence of two major genotypes[J]. Virology, 2015, 483:32-43. [27] SALAS M L, ANDRÉS G.African swine fever virus morphogenesis[J]. Virus Research, 2013, 173(1):29-41. |