China Animal Husbandry and Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (12): 5209-5217.doi: 10.16431/j.cnki.1671-7236.2024.12.009
• Physiological and Biochemical • Previous Articles
LI Ming1,2,3, SUN Juan1,2,3, WANG Manxi1,2,3, LI Qinghao1,2,3, LI Yilei1,2,3, MA Junxing1,2,3, JIN Xin1,2,3
Revised:
2024-05-31
Published:
2024-12-02
CLC Number:
LI Ming, SUN Juan, WANG Manxi, LI Qinghao, LI Yilei, MA Junxing, JIN Xin. Advances on Paracellular Permeability Based on Intestinal Tight Junctions[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(12): 5209-5217.
[1] MCGUINNESS S, SAJJADI S, WEBER C R, et al.Computational models of Claudin assembly in tight junctions and strand properties[J].International Journal of Molecular Sciences, 2024, 25(6):3364. [2] 杨靖源, 蒙俊, 杨堃.肠紧密连接蛋白与肠道屏障功能[J].医学综述, 2022, 28(2):235-239.YANG J Y, MENG J, YANG K.Intestinal tight junction protein and intestinal barrier function[J].Medical Review, 2022, 28(2):235-239.(in Chinese) [3] NYIMANU D, BEHM C, CHOUDHURY S, et al.The role of Claudin-2 in kedney function and dysfunction[J].Biochemical Society Transactions, 2023, 51(4):1437-1445. [4] NEYRINCK-LEGLANTIER D, LESAGE J, BLACHER S, et al.ZO-1 intracellular localization organizes immune response in non-small cell lung cancer[J].Frontiers in Cell and Developmental Biology, 2021, 9:749364. [5] SCHOSSLEITNER K, RAUSCHER S, GRÖGER M, et al.Evidence that Cingulin regulates endothelial barrier function in vitro and in vivo[J].Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36(4):647-654. [6] KUO W T, ODENWALD M A, TURNER J R, et al.Tight junction proteins Occludin and ZO-1 as regulators of epithelial proliferation and survival[J].Annals of the New York Academy of Sciences, 2022, 1514(1):21-33. [7] FUJIWARA S, NGUYEN T P, FURUSE K, et al.Tight junction formation by a Claudin mutant lacking the COOH-terminal PDZ domain-binding motif[J].Annals of the New York Academy of Sciences, 2022, 1516(1):85-94. [8] CURRY J N, TOKUDA S, MCANULTY P, et al.Combinatorial expression of claudins in the proximal renal tubule and its functional consequences[J].American Journal of Physiology-Renal Physiology, 2020, 318(5):F1138-F1146. [9] BERSELLI A, ALBERINI G, BENFENATI F, et al.The impact of pathogenic and artificial mutations on Claudin-5 selectivity from molecular dynamics simulations[J].Computational and Structural Biotechnology, 2023, 21:2640-2653. [10] THENET S, CARRIÈRE V.Special issue on the "Regulation and physiopathology of the gut barrier"[J].International Journal of Molecular Sciences, 2022, 23(18):10638. [11] ROSENTHAL R, GVNZEL D, PIONTEK J, et al.Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2[J].Acta Physiologica, 2020, 228(1):e13334. [12] MOONWIRIVAKIT A, PATHOMTHONGTAWEECHAI N, STEINHAGEN P R, et al.Tight junctions:From molecules to gastrointestinal diseases[J].Tissue Barriers, 2023, 11(2):2077620. [13] MONACO A, OVRYN B, AXIS J, et al.The epithelial cell leak pathway[J].International Journal of Molecular Sciences, 2021, 22(14):7677. [14] CHO Y, HARAGUCHI D, SHIGETOMI K, et al.Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin[J].The Journal of Cell Biology, 2022, 221(4):e202009037. [15] TANG Z, YANG Y, YANG M, et al.Elucidating the modulatory role of dietary hydroxyproline on the integrity and functional performance of the intestinal barrier in early-weaned piglets:A comprehensive analysis of its interplay with the gut microbiota and metabolites[J].International Immunopharmacology, 2024, 134:112268. [16] LI Y, CHEN T, CHEN L, et al.Construction of hyaluronic acid-functionalized magnolol nanoparticles for ulcerative colitis treatment[J]. International Journal of Biological Macromolecules, 2024, 268(P2):131920. [17] MEOLI L, GVNZEL D.Channel functions of Claudins in the organization of biological systems[J].Biomembranes, 2020, 1862(9):183344. [18] PLAZA J, MIZGUZE A, BASTIDA G, et al.Genetic variants associated with biological treatment response in inflammatory bowel disease:A systematic review[J].International Journal of Molecular Sciences, 2024, 25(7):3717. [19] SCHUMANN M, GVNZEL D, BUERGEL N, et al.Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease[J].Gut, 2012, 61(2):220-228. [20] CHEN Q, ZHANG H, SUN C Y, et al.Evaluation of two laboratory model methods for diarrheal irritable bowel syndrome[J].Molecular Medicine, 2023, 29(1):5. [21] KRUG S M, GRVNHAGEN C, ALLERS K, et al.Macromolecule translocation across the intestinal mucosa of HIV-infected patients by transcytosis and through apoptotic leaks[J].Cells, 2023, 12(14):1887. [22] BARRETT K E.Claudin-2 pore causes leak that breaches the dam in intestinal inflammation[J].The Journal of Clinical Investigation, 2020, 130(10):5100-5101. [23] ZHANG X, ZHANG Y, HE Y, et al.β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota[J].Jouranl of Translational Medicine, 2023, 21(1):14. [24] EPPLE H J, FRIEBEL J, MOOS V, et al.Architectural and functional alterations of the small intestinal mucosa in classical Whipple’s disease[J].Mucosal Immunology, 2017, 10(6):1542-1552. [25] KOZIEł M J, ZIAJA M, PIASTOWSKA-CIESIELSKA A W.Intestinal barrier, Claudins and Mycotoxins[J].Toxins, 2021, 13(11):758. [26] ZHANG C, YAN J, XIAO Y, et al.Inhibition of autophagic degradation process contributes to Claudin-2 expression increase and epithelial tight junction dysfunction in TNF-α treated cell monolayers[J].International Journal of Molecular Sciences, 2017, 18(1):157. [27] MEYER F, WENDLING D, DEMOUGEOT C, et al.Cytokines and intestinal epithelial permeability:A systematic review[J].Autoimmunity Reviews, 2023, 22(6):103331. [28] HUANG X, OSHIMA T, TOMITA T, et al.Butyrate alleviates cytokine-induced barrier dysfunction by modifying Claudin-2 levels[J].Biology, 2021, 10(3):205. [29] JIN X, YOU L, QIAO J, et al.Autophagy in colitis-associated colon cancer:Exploring its potential role in reducing initiation and preventing IBD-related CAC development[J].Autophagy, 2024, 20(2):242-258. [30] 冯燕海, 王凤君.紧密连接蛋白Claudin-2研究进展[J].重庆医学, 2018, 47(5):697-699.FENG Y H, WANG F J.Research progress on Claudin-2 tight junction protein[J].Chongqing Medicine, 2018, 47(5):697-699.(in Chinese) [31] TSAI P Y, ZHANG B, HE W Q, et al.IL-22 upregulates epithelial Claudin-2 to drive diarrhea and enteric pathogen clearance[J].Cell Host and Microbe, 2017, 21(6):671-681. [32] BOSMAN E S, CHAN J M, BHULLAR K, et al.Investigation of host and pathogen contributions to infectious colitis using the Citrobacter rodentium mouse model of infection[J].Methods in Molecular Biology, 2016, 1422:225-241. [33] SASSI A, WANG Y, CHASSOT A, et al.Interaction between epithelial sodium channel γ-subunit and Claudin-8 modulates paracellular sodium permeability in renal collecting duct[J].Journal of the American Society of Nephrology, 2020, 31(5):1009-1023. [34] AHMAD R, CHATURVEDI R, OLIVARES-VILLAGÓMEZ D, et al.Targeted colonic Claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis[J].Mucosal Immunology, 2014, 7(6):1340-1353. [35] SEO K, SEO J, YEUN J, et al.The role of mucosal barriers in human gut health[J].Archives of Pharmacal Research, 2021, 44(4):325-341. [36] CAPALDA C T.Claudin barriers on the brink:How conflicting tissue and cellular priorities drive IBD pathogenesis[J].International Journal of Molecular Sciences, 2023, 24(10):8562. [37] BUHRMANN C, SHAYAN P, KRAEHE P, et al.Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer[J].Biochemical Pharmacology, 2015, 98(1):51-68. [38] WEI M, ZHANG Y, YANG X, et al.Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription[J].Clinical and Translational Medicine, 2021, 11(12):e667. [39] OAMI T, ABTAHI S, SHIMAZUI T, et al.Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(10):e2217877121. [40] AYALA-TORRES C, KRUG S M, ROSENTHAL R, et al.Angulin-1(LSR) affects paracellular water transport, however only in tight epithelial cells[J].International Journal of Molecular Sciences, 2021, 22(15):7827. [41] ZHU L, HAN J, LI L, et al.Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer[J].Frontiers in Immunology, 2019, 10:1441. [42] SHIGETOMI K, ONO Y, MATSUZAWA K, et al.Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation[J].Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(8):e2217561120. [43] RALEIGH D R, BOE D M, YU D, et al.Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function[J].The Journal of Cell Biology, 2011, 193(3):565-582. [44] MARCHELLETTA R R, KRISHNAN M, SPALINGER R M, et al.T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling[J]. Journal of Clinical Investigation, 2021, 131(17):e138230. [45] WANG L, SONG X, ZHOU Y, et al.Sclareol protected against intestinal barrier dysfunction ameliorating Crohn’s disease-like colitis via Nrf2/NF-B/MLCK signalling[J].International Immunopharmacology, 2024, 133:112140. [46] SU L, NALLE S C, SHEN L, et al.TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis[J].Gastroenterology, 2013, 145(2):407-415. [47] WEBER C R, RALEIGH D R, SU L, et al.Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity[J].The Journal of Biological Chemistry, 2010, 285(16):12037-12046. [48] ZHENG S, WANG Z, CAO X, et al.Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay[J].Ecotoxicology and Environmental Safety, 2024, 279:116458. [49] XU D, LIU D, JIANG N, et al.Narirutin mitigates dextrose sodium sulfate-induced colitis in mice by modulating intestinal flora[J].Phytomedicine, 2024, 130:155730. [50] SUGIYAMA S, SASAKI T, TANAKA H, et al.The tight junction protein Occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice[J].Scientific Reports, 2023, 13(1):2892. [51] GRAHAM W V, HE W, MARCHIANDO A M, et al.Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis[J].Nature Medicine, 2019, 25(4):690-700. [52] JIN Y, BLIKSLAGER A T.Myosin light chain kinase mediates intestinal barrier dysfunction via Occludin endocytosis during anoxia/reoxygenation injury[J].American Journal of Physiology. Cell Physiology, 2016, 311(6):C996-C1004. [53] SAHA K, SUBRAMENIUM G A, WANG A, et al.Autophagy reduces the degradation and promotes membrane localization of Occludin to enhance the intestinal epithelial tight junction barrier against paracellular macromolecule flux[J].Journal of Crohn, s and Colities, 2023, 17(3):433-449. [54] MARCHIANDO A M, SHEN L, GRAHAM W V, et al.Caveolin-1-dependent Occludin endocytosis is required for TNF-induced tight junction regulation in vivo[J].The Journal of Cell Biology, 2010, 189(1):111-126. [55] ARASH A, PEYMAN A, JOHAN G, et al.Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions[J].Tissue Barriers, 2021, 10(3):1996830. [56] MIN S N, CONG X, ZHANG Y, et al.Tricellulin modulates transport of macromolecules in the salivary gland[J].Journal of Dental Research, 2020, 99(3):302-310. [57] 毛祥娣, 杨泽希, 丛馨, 等.三细胞紧密连接蛋白tricellulin表达与功能调控的研究进展[J].中国病理生理杂志, 2020, 36(12):2276-2282.MAO X D, YANG Z X, CONG X, et al.Progress in expression and functional of tricellular tight junction protein tricellulin[J].Chinese Journal of Pathophysiology, 2020, 36(12):2276-2282.(in Chinese) [58] SAITO A C, HIGASHI T, FUKAZAWA Y, et al.Occludin and Tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function[J].Molecular Biology of the Cell, 2021, 32(8):722-738. [59] HAAS A J, ZIHNI C, KRUG S M, et al.ZO-1 guides tight junction assembly and epithelial morphogenesis via cytoskeletal tension-dependent and -independent functions[J].Cells, 2022, 11(23):3775. [60] DING S, LI K, HAN X, et al.Long-term use of etomidate disrupts the intestinal homeostasis and nervous system in mice[J].Toxicology, 2024, 504:153802. [61] SAITO A C, ENDO C, FUKAZAWA Y, et al.Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells[J].Annals of the New York Academy Sciences, 2022, 1517(1):234-250. [62] VAN ITALLIE C M, TIETGENS A J, ANDERSON J M.Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1[J].Molecular Biology of the Cell, 2017, 28(4):524-534. [63] YU S, HE J, XIE K.Zonula Occludens proteins signaling in inflammation and tumorigenesis[J].International Journal of Biological Sciences, 2023, 19(12):3804-3815. [64] TOKUDA S, HIGASHI T, FURUSE M.ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: Involvement of ZO-1 in the regulation of cytoskeleton and cell shape[J].PLoS One, 2014, 9(8):e104994. [65] RODGERS L S, BEAM M T, ANDERSON J M, et al.Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1[J].The Journal of Cell Sciences, 2013, 126(Pt 7):1565-1575. [66] SPADARO D, LE S, LAROCHE T, et al.Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors[J].Current Biology, 2017, 27(24):3783-3795.e8. [67] ODENWALD M A, CHOI W, KUO W T, et al.The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo[J].The Journal of Biological Chemistry, 2018, 293(45):17317-17335. |
[1] | AI Jingzhu, XU Shiwen. PS-MPs and DEHP Combined Induce Autophagy in Mouse Colonic Epithelial Cells via NO/iNOS/NF-κB Pathway [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(11): 4678-4689. |
[2] | QIN Kening, CHEN Dandan, XU Peng, WANG Xiaomin. Research Progress on the Regulation of Autophagy by Acetylation Modification [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(11): 4690-4701. |
[3] | YANG Wenzhe, LIU Kexiang, WANG Shirui, ZHAO Tong, PAN Feilong, ZHAO Shuchen, ZHAO Lijia. Study on Apoptosis of Mouse Leydig Cells Induced by BPA Based on Mitochondrial Damage [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(9): 3739-3751. |
[4] | CHEN Bohe, LIUFU Sui, YU Zonggang, WANG Kaiming, LIU Xiaolin, YI Lei, MA Haiming. Research Progress on the Regulation of Non-coding RNA in Muscle Fiber-type Conversion in Animals [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 1132-1141. |
[5] | LI Mengyang, CHAO Bing, ZHOU Tao, ZHANG Jianping. Effect of Sonchus oleraceus L.on Inflammatory Factors and HMGB1/TLR4/NF-κB Signaling Pathway in Mice with Pneumonia [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(12): 5232-5242. |
[6] | HE Yue, CHEN Mengdi, BAI Jinhui, SONG Jixuan, XIA Guangjun. Research Progress on the Regulation of miRNA from Adipose-derived Exosomes on Lipid Metabolism [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(10): 3950-3958. |
[7] | SUN Chen, GE Sheng, NING Xiaqing, WANG Jiaqi, ZHANG Nuannuan, WANG Xiaoran, ZHANG Shixia. Oxidative Stress Model of BRL-3A Cells Induced by Sodium Hydrosulfite [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2217-2223. |
[8] | LI Weidong, JIANG Yuting, DUAN Hongwei, HE Haijun, YANG Shuai, DING Ziqiang, WU Jianxin, ZHANG Enqiu, HU Junjie. Distribution and Expression of Melatonin Receptors MT1 and MT2 in Various Stomach Tissues of Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(8): 3256-3262. |
[9] | WANG Ben, YUAN Shuai, ZHENG Yi, ZHANG Hongling. Mitigating Effect and Mechanism of JNK Inhibitor on Drug-induced Injury of Piglet Hepatocytes [J]. China Animal Husbandry and Veterinary Medicine, 2022, 49(5): 1888-1894. |
[10] | XIONG Heli, XI Dongmei, LI Guozhi, WANG Liping, LIU Xiangying, YUAN Mengya, LI Jing, DENG Weidong. Research Advances on the Formation Mechanism of Animal Melanocytes and Its Related Traits [J]. , 2019, 46(1): 72-79. |
[11] | ZHANG Chengyu, WANG Yueying, XU Chunmei, ZHU Heshui, ZHONG Kai, LI Heping. Generation of H2S and Its Role in Apoptosis and Inflammatory Response [J]. , 2018, 45(12): 3402-3407. |
[12] | WAN Hua-yun, HU Jun-yi, WANG Zi-xu, CHEN Yao-xing, CAO Jing, DONG Yan-jun, MA Bao-chen, DONG Yu-lan. Research Advance on Intestinal Microbial-epithelial Cell Barrier Interactions [J]. , 2017, 44(12): 3642-3649. |
[13] | ZHOU Xu, YANG Hui-ming, CHEN Yao-xing, CAO Jing, DONG Yu-lan, WANG Zi-xu. Role of Illumination in the Central Circadian Clocks Modulated Secretions of Melatonin and Gonadotrophin Releasing Hormone [J]. , 2014, 41(9): 167-173. |
[14] | . [J]. , 2010, 37(4): 18-20. |
[15] | YAO Jiawei, HUANG Yujie, CHEN Zhisheng, WANG Bingyun, ZHANG Hui. Immunomodulatory Effects of Dimethyl Alpha-ketoglutarate Pretreatment on Canine Adipose-derived Mesenchymal Stem Cells [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(4): 1642-1652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||