[1] MCGUINNESS S, SAJJADI S, WEBER C R, et al.Computational models of Claudin assembly in tight junctions and strand properties[J].International Journal of Molecular Sciences, 2024, 25(6):3364. [2] 杨靖源, 蒙俊, 杨堃.肠紧密连接蛋白与肠道屏障功能[J].医学综述, 2022, 28(2):235-239.YANG J Y, MENG J, YANG K.Intestinal tight junction protein and intestinal barrier function[J].Medical Review, 2022, 28(2):235-239.(in Chinese) [3] NYIMANU D, BEHM C, CHOUDHURY S, et al.The role of Claudin-2 in kedney function and dysfunction[J].Biochemical Society Transactions, 2023, 51(4):1437-1445. [4] NEYRINCK-LEGLANTIER D, LESAGE J, BLACHER S, et al.ZO-1 intracellular localization organizes immune response in non-small cell lung cancer[J].Frontiers in Cell and Developmental Biology, 2021, 9:749364. [5] SCHOSSLEITNER K, RAUSCHER S, GRÖGER M, et al.Evidence that Cingulin regulates endothelial barrier function in vitro and in vivo[J].Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36(4):647-654. [6] KUO W T, ODENWALD M A, TURNER J R, et al.Tight junction proteins Occludin and ZO-1 as regulators of epithelial proliferation and survival[J].Annals of the New York Academy of Sciences, 2022, 1514(1):21-33. [7] FUJIWARA S, NGUYEN T P, FURUSE K, et al.Tight junction formation by a Claudin mutant lacking the COOH-terminal PDZ domain-binding motif[J].Annals of the New York Academy of Sciences, 2022, 1516(1):85-94. [8] CURRY J N, TOKUDA S, MCANULTY P, et al.Combinatorial expression of claudins in the proximal renal tubule and its functional consequences[J].American Journal of Physiology-Renal Physiology, 2020, 318(5):F1138-F1146. [9] BERSELLI A, ALBERINI G, BENFENATI F, et al.The impact of pathogenic and artificial mutations on Claudin-5 selectivity from molecular dynamics simulations[J].Computational and Structural Biotechnology, 2023, 21:2640-2653. [10] THENET S, CARRIÈRE V.Special issue on the "Regulation and physiopathology of the gut barrier"[J].International Journal of Molecular Sciences, 2022, 23(18):10638. [11] ROSENTHAL R, GVNZEL D, PIONTEK J, et al.Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2[J].Acta Physiologica, 2020, 228(1):e13334. [12] MOONWIRIVAKIT A, PATHOMTHONGTAWEECHAI N, STEINHAGEN P R, et al.Tight junctions:From molecules to gastrointestinal diseases[J].Tissue Barriers, 2023, 11(2):2077620. [13] MONACO A, OVRYN B, AXIS J, et al.The epithelial cell leak pathway[J].International Journal of Molecular Sciences, 2021, 22(14):7677. [14] CHO Y, HARAGUCHI D, SHIGETOMI K, et al.Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin[J].The Journal of Cell Biology, 2022, 221(4):e202009037. [15] TANG Z, YANG Y, YANG M, et al.Elucidating the modulatory role of dietary hydroxyproline on the integrity and functional performance of the intestinal barrier in early-weaned piglets:A comprehensive analysis of its interplay with the gut microbiota and metabolites[J].International Immunopharmacology, 2024, 134:112268. [16] LI Y, CHEN T, CHEN L, et al.Construction of hyaluronic acid-functionalized magnolol nanoparticles for ulcerative colitis treatment[J]. International Journal of Biological Macromolecules, 2024, 268(P2):131920. [17] MEOLI L, GVNZEL D.Channel functions of Claudins in the organization of biological systems[J].Biomembranes, 2020, 1862(9):183344. [18] PLAZA J, MIZGUZE A, BASTIDA G, et al.Genetic variants associated with biological treatment response in inflammatory bowel disease:A systematic review[J].International Journal of Molecular Sciences, 2024, 25(7):3717. [19] SCHUMANN M, GVNZEL D, BUERGEL N, et al.Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease[J].Gut, 2012, 61(2):220-228. [20] CHEN Q, ZHANG H, SUN C Y, et al.Evaluation of two laboratory model methods for diarrheal irritable bowel syndrome[J].Molecular Medicine, 2023, 29(1):5. [21] KRUG S M, GRVNHAGEN C, ALLERS K, et al.Macromolecule translocation across the intestinal mucosa of HIV-infected patients by transcytosis and through apoptotic leaks[J].Cells, 2023, 12(14):1887. [22] BARRETT K E.Claudin-2 pore causes leak that breaches the dam in intestinal inflammation[J].The Journal of Clinical Investigation, 2020, 130(10):5100-5101. [23] ZHANG X, ZHANG Y, HE Y, et al.β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota[J].Jouranl of Translational Medicine, 2023, 21(1):14. [24] EPPLE H J, FRIEBEL J, MOOS V, et al.Architectural and functional alterations of the small intestinal mucosa in classical Whipple’s disease[J].Mucosal Immunology, 2017, 10(6):1542-1552. [25] KOZIEł M J, ZIAJA M, PIASTOWSKA-CIESIELSKA A W.Intestinal barrier, Claudins and Mycotoxins[J].Toxins, 2021, 13(11):758. [26] ZHANG C, YAN J, XIAO Y, et al.Inhibition of autophagic degradation process contributes to Claudin-2 expression increase and epithelial tight junction dysfunction in TNF-α treated cell monolayers[J].International Journal of Molecular Sciences, 2017, 18(1):157. [27] MEYER F, WENDLING D, DEMOUGEOT C, et al.Cytokines and intestinal epithelial permeability:A systematic review[J].Autoimmunity Reviews, 2023, 22(6):103331. [28] HUANG X, OSHIMA T, TOMITA T, et al.Butyrate alleviates cytokine-induced barrier dysfunction by modifying Claudin-2 levels[J].Biology, 2021, 10(3):205. [29] JIN X, YOU L, QIAO J, et al.Autophagy in colitis-associated colon cancer:Exploring its potential role in reducing initiation and preventing IBD-related CAC development[J].Autophagy, 2024, 20(2):242-258. [30] 冯燕海, 王凤君.紧密连接蛋白Claudin-2研究进展[J].重庆医学, 2018, 47(5):697-699.FENG Y H, WANG F J.Research progress on Claudin-2 tight junction protein[J].Chongqing Medicine, 2018, 47(5):697-699.(in Chinese) [31] TSAI P Y, ZHANG B, HE W Q, et al.IL-22 upregulates epithelial Claudin-2 to drive diarrhea and enteric pathogen clearance[J].Cell Host and Microbe, 2017, 21(6):671-681. [32] BOSMAN E S, CHAN J M, BHULLAR K, et al.Investigation of host and pathogen contributions to infectious colitis using the Citrobacter rodentium mouse model of infection[J].Methods in Molecular Biology, 2016, 1422:225-241. [33] SASSI A, WANG Y, CHASSOT A, et al.Interaction between epithelial sodium channel γ-subunit and Claudin-8 modulates paracellular sodium permeability in renal collecting duct[J].Journal of the American Society of Nephrology, 2020, 31(5):1009-1023. [34] AHMAD R, CHATURVEDI R, OLIVARES-VILLAGÓMEZ D, et al.Targeted colonic Claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis[J].Mucosal Immunology, 2014, 7(6):1340-1353. [35] SEO K, SEO J, YEUN J, et al.The role of mucosal barriers in human gut health[J].Archives of Pharmacal Research, 2021, 44(4):325-341. [36] CAPALDA C T.Claudin barriers on the brink:How conflicting tissue and cellular priorities drive IBD pathogenesis[J].International Journal of Molecular Sciences, 2023, 24(10):8562. [37] BUHRMANN C, SHAYAN P, KRAEHE P, et al.Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer[J].Biochemical Pharmacology, 2015, 98(1):51-68. [38] WEI M, ZHANG Y, YANG X, et al.Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription[J].Clinical and Translational Medicine, 2021, 11(12):e667. [39] OAMI T, ABTAHI S, SHIMAZUI T, et al.Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(10):e2217877121. [40] AYALA-TORRES C, KRUG S M, ROSENTHAL R, et al.Angulin-1(LSR) affects paracellular water transport, however only in tight epithelial cells[J].International Journal of Molecular Sciences, 2021, 22(15):7827. [41] ZHU L, HAN J, LI L, et al.Claudin family participates in the pathogenesis of inflammatory bowel diseases and colitis-associated colorectal cancer[J].Frontiers in Immunology, 2019, 10:1441. [42] SHIGETOMI K, ONO Y, MATSUZAWA K, et al.Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation[J].Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(8):e2217561120. [43] RALEIGH D R, BOE D M, YU D, et al.Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function[J].The Journal of Cell Biology, 2011, 193(3):565-582. [44] MARCHELLETTA R R, KRISHNAN M, SPALINGER R M, et al.T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling[J]. Journal of Clinical Investigation, 2021, 131(17):e138230. [45] WANG L, SONG X, ZHOU Y, et al.Sclareol protected against intestinal barrier dysfunction ameliorating Crohn’s disease-like colitis via Nrf2/NF-B/MLCK signalling[J].International Immunopharmacology, 2024, 133:112140. [46] SU L, NALLE S C, SHEN L, et al.TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis[J].Gastroenterology, 2013, 145(2):407-415. [47] WEBER C R, RALEIGH D R, SU L, et al.Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity[J].The Journal of Biological Chemistry, 2010, 285(16):12037-12046. [48] ZHENG S, WANG Z, CAO X, et al.Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay[J].Ecotoxicology and Environmental Safety, 2024, 279:116458. [49] XU D, LIU D, JIANG N, et al.Narirutin mitigates dextrose sodium sulfate-induced colitis in mice by modulating intestinal flora[J].Phytomedicine, 2024, 130:155730. [50] SUGIYAMA S, SASAKI T, TANAKA H, et al.The tight junction protein Occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice[J].Scientific Reports, 2023, 13(1):2892. [51] GRAHAM W V, HE W, MARCHIANDO A M, et al.Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis[J].Nature Medicine, 2019, 25(4):690-700. [52] JIN Y, BLIKSLAGER A T.Myosin light chain kinase mediates intestinal barrier dysfunction via Occludin endocytosis during anoxia/reoxygenation injury[J].American Journal of Physiology. Cell Physiology, 2016, 311(6):C996-C1004. [53] SAHA K, SUBRAMENIUM G A, WANG A, et al.Autophagy reduces the degradation and promotes membrane localization of Occludin to enhance the intestinal epithelial tight junction barrier against paracellular macromolecule flux[J].Journal of Crohn, s and Colities, 2023, 17(3):433-449. [54] MARCHIANDO A M, SHEN L, GRAHAM W V, et al.Caveolin-1-dependent Occludin endocytosis is required for TNF-induced tight junction regulation in vivo[J].The Journal of Cell Biology, 2010, 189(1):111-126. [55] ARASH A, PEYMAN A, JOHAN G, et al.Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions[J].Tissue Barriers, 2021, 10(3):1996830. [56] MIN S N, CONG X, ZHANG Y, et al.Tricellulin modulates transport of macromolecules in the salivary gland[J].Journal of Dental Research, 2020, 99(3):302-310. [57] 毛祥娣, 杨泽希, 丛馨, 等.三细胞紧密连接蛋白tricellulin表达与功能调控的研究进展[J].中国病理生理杂志, 2020, 36(12):2276-2282.MAO X D, YANG Z X, CONG X, et al.Progress in expression and functional of tricellular tight junction protein tricellulin[J].Chinese Journal of Pathophysiology, 2020, 36(12):2276-2282.(in Chinese) [58] SAITO A C, HIGASHI T, FUKAZAWA Y, et al.Occludin and Tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function[J].Molecular Biology of the Cell, 2021, 32(8):722-738. [59] HAAS A J, ZIHNI C, KRUG S M, et al.ZO-1 guides tight junction assembly and epithelial morphogenesis via cytoskeletal tension-dependent and -independent functions[J].Cells, 2022, 11(23):3775. [60] DING S, LI K, HAN X, et al.Long-term use of etomidate disrupts the intestinal homeostasis and nervous system in mice[J].Toxicology, 2024, 504:153802. [61] SAITO A C, ENDO C, FUKAZAWA Y, et al.Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells[J].Annals of the New York Academy Sciences, 2022, 1517(1):234-250. [62] VAN ITALLIE C M, TIETGENS A J, ANDERSON J M.Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1[J].Molecular Biology of the Cell, 2017, 28(4):524-534. [63] YU S, HE J, XIE K.Zonula Occludens proteins signaling in inflammation and tumorigenesis[J].International Journal of Biological Sciences, 2023, 19(12):3804-3815. [64] TOKUDA S, HIGASHI T, FURUSE M.ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: Involvement of ZO-1 in the regulation of cytoskeleton and cell shape[J].PLoS One, 2014, 9(8):e104994. [65] RODGERS L S, BEAM M T, ANDERSON J M, et al.Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1[J].The Journal of Cell Sciences, 2013, 126(Pt 7):1565-1575. [66] SPADARO D, LE S, LAROCHE T, et al.Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors[J].Current Biology, 2017, 27(24):3783-3795.e8. [67] ODENWALD M A, CHOI W, KUO W T, et al.The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo[J].The Journal of Biological Chemistry, 2018, 293(45):17317-17335. |