[1] ZHENG Q, LIN J, HUANG J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):E9474-E9482. [2] 潘建飞, 郑千涛, 陶聪, 等.急性冷刺激后巴马猪背膘和腹股沟皮下脂肪组织的脂质组比较[J]. 中国畜牧兽医, 2020, 47(9):2759-2766. PAN J F, ZHENG Q T, TAO C, et al. Comparison of lipid profiles of backfat and inguinal subcutaneous white adipose tissue from acute cold-treat Bama pigs[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(9):2759-2766.(in Chinese) [3] FAYYAZ S, JAPTOK L, KLEUSER B.Divergent role of sphingosine 1-phosphate on insulin resistance[J]. Cellular Physiology and Biochemistry, 2014, 34(1):134-147. [4] TAN-CHEN S, GUITTON J, BOURRON O, et al. Sphingolipid metabolism and signaling in skeletal muscle:From physiology to physiopathology[J]. Frontiers in Endocrinology, 2020, 11:491. [5] GOMEZ-MUOZ A, PRESA N, GOMEZ-LARRAURI A, et al. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate[J]. Progress in Lipid Research, 2016, 61:51-62. [6] ORDOEZ M, PRESA N, DOMINGUEZ-HERRERA A, et al. Regulation of adipogenesis by ceramide 1-phosphate[J]. Experimental Cell Research, 2018, 372(2):150-157. [7] YU J, KIM H M, KIM K P, et al. Ceramide kinase regulates the migration of bone marrow-derived mesenchymal stem cells[J]. Biochemical and Biophysical Research Communications, 2019, 508(2):361-367. [8] HERNÁNDEZ-CORBACHO M J, SALAMA M F, CANALS D, et al. Sphingolipids in mitochondria[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2017, 1862(1):56-68. [9] WATT M J, HOY A J.Lipid metabolism in skeletal muscle:Generation of adaptive and maladaptive intracellular signals for cellular function[J]. American Journal of Physiology Endocrinology and Metabolism, 2012, 302(11):E1315-E1328. [10] SCAAL M, CHRIST B.Formation and differentiation of the avian dermomyotome[J]. Anatomy and Embryology, 2004, 208(6):411-424. [11] LIU Y, WANG J, ZHOU X, et al. miR-324-5p inhibits C2C12 cell differentiation and promotes intramuscular lipid deposition through lncDUM and PM20D1[J]. Molecular Therapy Nucleic Acids, 2020, 22:722-732. [12] DUMONT N A, WANG Y X, RUDNICKI M A.Intrinsic and extrinsic mechanisms regulating satellite cell function[J]. Development, 2015, 142(9):1572-1581. [13] BENTZINGER C F, WANG Y X, RUDNICKI M A.Building muscle:Molecular regulation of myogenesis[J]. Cold Spring Harbar Perspectives Biology, 2012, 4(2):a008342. [14] 韩利军, 乔虎云, 梁炳生.肌卫星细胞研究新进展[J]. 山西医药杂志, 2020, 49(12):1508-1513. HAN L J, QIAO H Y, LIANG B S.Research progress of muscle satellite cells[J]. Shanxi Medical Journal, 2020, 49(12):1508-1513.(in Chinese) [15] 吕冰洁, 杨阳, 张建初.鞘磷脂代谢物与肺癌关系的研究进展[J]. 华中科技大学学报(医学版), 2014, 43(5):603-605. LYU B J, YANG Y, ZHANG J C.Research progress on the relationship between sphingolipin metabolites and lung cancer[J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2014, 43(5):603-605.(in Chinese) [16] MENCARELLI C, MARTINEZ-MARTINEZ P.Ceramide function in the brain:When a slight tilt is enough[J]. Cell and Molecular Life Sciences, 2013, 70(2):181-203. [17] SORIA LOPEZ J A, GONZÁLEZ H M, LÉGER G C.Alzheimer's disease[J]. Handbook of Clinical Neurology, 2019, 167:231-255. [18] GAETA M, MESSINA S, MILETO A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy:Evaluation of disease distribution and correlation with clinical assessments.Preliminary experience[J]. Skeletal Radiology, 2012, 41(8):955-961. [19] CORDEIRO A V, SILVA V R R, PAULI J R, et al. The role of sphingosine-1-phosphate in skeletal muscle:Physiology, mechanisms, and clinical perspectives[J]. Journal of Cellular Physiology, 2019, 234(7):10047-10059. [20] CHAKRABORTY M, JIANG X C.Sphingomyelin and its role in cellular signaling[J]. Advances in Experimental Medicine and Biology, 2013, 991:1-14. [21] GALBIATI F, RAZANI B, LISANTI M P.Emerging themes in lipid rafts and caveolae[J]. Cell, 2001, 106(4):403-411. [22] PIKE L J.Growth factor receptors, lipid rafts and caveolae:An evolving story[J]. Biochimica et Biophysica Acta, 2005, 1746(3):260-273. [23] NAGATA Y, PARTRIDGE T A, MATSUDA R, et al. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling[J]. The Journal of Cell Biology, 2006, 174(2):245-253. [24] ISHIDA Y, KIYOKAWA Y, ASAI T, et al. Ameliorating effects of sphingomyelin-based liposomes on sarcopenia in senescence-accelerated mice[J]. Biological and Pharmaceutical Bulletin, 2016, 39(5):786-793. [25] SARKAR J, CHAKRABORTI T, CHOWDHURY A, et al. Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation[J]. Journal of Cell Communication and Signaling, 2019, 13(4):473-489. [26] WESLEY U V, HATCHER J F, DEMPSEY R J.Sphingomyelin synthase 1 regulates Neuro-2a cell proliferation and cell cycle progression through modulation of p27 expression and Akt signaling[J]. Molecular Neurobiol, 2015, 51(3):1530-1541. [27] DUMONT N A, BENTZINGER C F, SINCENNES M C, et al. Satellite cells and skeletal muscle regeneration[J]. Comprehensive Physiology, 2015, 5(3):1027-1059. [28] 赵新艳, 郭妍婷, 陈俊贞, 等.牛骨骼肌卫星细胞的分离鉴定和诱导分化[J]. 中国畜牧兽医, 2020, 47(10):3249-3258. ZHAO X Y, GUO Y T, CHEN J Z, et al. Isolation, characterization and differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry and Veterinary Medicine, 2020, 47(10):3249-3258.(in Chinese) [29] UEZUMI A, FUKADA S, YAMAMOTO N, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J]. Nature Cell Biology, 2010, 12(2):143-152. [30] MEACCI E, NUTI F, DONATI C, et al. Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts[J]. Journal of Cellular Physiology, 2008, 214(1):210-220. [31] CHOI S, SNIDER A J.Sphingolipids in high fat diet and obesity-related diseases[J]. Mediators of Inflammation, 2015, 2015:520618. |