[1] LIN C H,SHYU C L,WU Z Y,et al.Antimicrobial peptide mastoparan-AF kills multi-antibiotic resistant Escherichia coli O157∶H7 via multiple membrane disruption patterns and likely by adopting 3-11 amphipathic helices to favor membrane interaction[J].Membranes (Basel),2023,13(2):251. [2] SHAKIBAIE M R,MODARESI F,AZIZI O,et al.Amphiphilic peptide mastoparan-B induces conformational changes within the AdeB efflux pump,down-regulates adeB gene expression,and restores antibiotic susceptibility in an MDR strain of Acinetobacter baumannii[J].Proteins,2023,91(9):1205-1221. [3] 翟培,韩晋辉,吕文平.胡蜂毒素Mastoparan的分子改造和定量构效关系研究进展[J].中国动物传染病学报,2022,30(4):229-236.ZHAI P,HAN J H,LYU W P.Research progress in molecular modification and QSAR of mastoparan[J].Chinese Journal of Animal Infectious Diseases,2022,30(4):229-236.(in Chinese) [4] IRAZAZABAL L N,PORTO W F,RIBEIRO S M,et al.Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan[J].Biochimica et Biophysica Acta:Biomembranes,2016,1858(11):2699-2708. [5] DA SILVA A V,DE SOUZA B M,DOS SANTOS CABRERA M P,et al.The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems[J].Biochimica et Biophysica Acta:Biomembranes,2014,1838(10):2357-2368. [6] ARIFUZZAMAN M,MOBLEY Y R,CHOI H W,et al.MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection[J].Science Advances,2019,5(1):eaav0216. [7] JONES S,HOWL J.Biological applications of the receptor mimetic peptide mastoparan[J].Current Protein & Peptide Science,2006,7(6):501-508. [8] 翟培,韩晋辉,潘晓瑜.基于天蚕素A和胡蜂毒素的杂合肽设计及活性鉴定[J].中国畜牧兽医,2020,47(9):3006-3013.ZHAI P,HAN J H,PAN X Y.Design and activity identification of hybrid peptide based on cecropin A and mastoparan[J].China Animal Husbandry & Veterinary Medicine,2020,47(9):3006-3013.(in Chinese) [9] TAN P,FU H,MA X.Design,optimization,and nanotechnology of antimicrobial peptides:From exploration to applications[J].Nano Today,2021,39:101229. [10] RUNGSA P,PEIGNEUR S,JANGPROMMA N,et al.In silico and in vitro structure-activity relationship of mastoparan and its analogs[J].Molecules,2022,27(2):561. [11] FREDERIKSEN N,HANSEN P R,ZABICKA D,et al.Alternating cationic-hydrophobic peptide/peptoid hybrids:Influence of hydrophobicity on antibacterial activity and cell selectivity[J].ChemMedChem,2020,15(24):2544-2561. [12] RUCZYNSKI J,PARFIAANOWICZ B,MUCHA P,et al.Structure-activity relationship of new chimeric analogs of mastoparan from the wasp venom Paravespula lewisii[J].International Journal of Molecular Sciences,2022,23(15):8269. [13] 韩晋辉,翟培,吕文平,等.杂合抗菌肽KL-21与抗生素体外协同抗菌效果研究[J].饲料工业,2024,45(12):123-127.HAN J H,ZHAI P,LYU W P,et al.Research on synergistic antibacterial effect of hybrid antimicrobial peptide KL-21 and antibiotics in vitro[J].Feed Industry,2024,45(12):123-127.(in Chinese) [14] WANG C,YANG C,CHEN Y C,et al.Rational design of hybrid peptides:A novel drug design approach[J].Current Medical Science,2019,39(3):349-355. [15] MWANGI J,KAMAU P M,THUKU R C,et al.Design methods for antimicrobial peptides with improved performance[J]. Zoological Research,2023,44(6):1095-1114. [16] IZABELA R,JAROSLAW R,MAGDALENA A,et al.Transportan 10 improves the anticancer activity of cisplatin[J].Naunyn Schmiedebergs Archives of Pharmacology,2016,389(5):485-497. [17] BENNETT A L,CRANFORD K N,BATES A L,et al.A molecular dynamics study of cell-penetrating peptide transportan-10(TP10):Binding,folding and insertion to transmembrane state in zwitterionic membrane[J].Biochimica et Biophysica Acta:Biomembranes,2024,1866(1):184218. [18] YANG Y,WU D,WANG C,et al.Hybridization with insect cecropin A (1-8) improve the stability and selectivity of naturally occurring peptides[J].International Journal of Molecular Sciences,2020,21(4):1470. [19] WEI X B,WU R J,SI D Y,et al.Novel hybrid peptide cecropin A (1-8)-LL37(17-30) with potential antibacterial activity[J].International Journal of Molecular Sciences,2016,17(7):983. [20] BOBONE S,STELLA L.Selectivity of antimicrobial peptides:A complex interplay of multiple equilibria[J].Advances in Experimental Medicine and Biology,2019,1117:175-214. [21] GAGAT P,OSTROWKA M,DUDA MADEJ A,et al.Enhancing antimicrobial peptide activity through modifications of charge,hydrophobicity,and structure[J].International Journal of Molecular Sciences,2024,25(19):10821. [22] LOFFREDO M R,CASCIARO B,BELLAVITA R,et al.Strategic single-residue substitution in the antimicrobial peptide esc(1-21) confers activity against Staphylococcus aureus,including drug-resistant and biofilm phenotype[J].ACS Infectious Diseases,2024,10(7):2403-2418. [23] OSHIRO K G N,CANDIDO E S,CHAN L Y,et al. Computer-aided design of mastoparan-like peptides enables the generation of nontoxic variants with extended antibacterial properties[J].Journal of Medicinal Chemistry,2019,62(17):8140-8151. [24] CHAKRABARTTY A,SCHELLMAN J,BALDWIN R.Large differences in the helix propensities of alanine and glycine[J].Nature,1991,351:586-588. [25] STREHLOW K G,BALDWIN R L.Effect of the substitution Ala-Gly at each of five residue positions in the C-peptide helix[J].Biochemistry,1989,28(5):2130-2133. [26] PHUONG H B T,HUY B L,VAN K N.Reducing self-assembly by increasing net charge:Effect on biological activity of mastoparan C[J].ACS Medicinal Chemistry Letters,2023,15(1):69-75. |