中国畜牧兽医 ›› 2020, Vol. 47 ›› Issue (10): 3314-3322.doi: 10.16431/j.cnki.1671-7236.2020.10.031
敬敬1,2, 姚东1,2, 凌英会1,2
收稿日期:
2020-01-19
出版日期:
2020-10-20
发布日期:
2020-10-17
通讯作者:
凌英会
E-mail:lingyinghui@ahau.edu.cn
作者简介:
敬敬(1997-),女,四川梓潼人,硕士,研究方向:动物遗传育种与繁殖,E-mail:jingjing7209@163.com
基金资助:
JING Jing1,2, YAO Dong1,2, LING Yinghui1,2
Received:
2020-01-19
Online:
2020-10-20
Published:
2020-10-17
摘要: 骨骼肌是肌肉的主要构成部分,骨骼肌细胞发生增殖和分化的过程都是肌肉发育的基础,直接影响着家养动物的产肉性能。研究发现表观遗传修饰作用对骨骼肌细胞增殖分化具有重要的调控作用,表明该遗传修饰作用对家养动物肌肉发育具有重大的意义。作者从DNA甲基化对骨骼肌细胞增殖分化影响、组蛋白乙酰化所含因子调控基因选择表达作用、非编码RNA调控和染色体重塑作用所起的影响等方面分别介绍了表观遗传在骨骼肌细胞增殖分化过程中的研究进展,简述了不同修饰方式和不同作用因子对骨骼肌增殖和分化两个过程的影响。同时也回顾了前人在研究骨骼肌增殖分化过程所用到的方法和手段,进而分析了表观调控作用因子在骨骼肌生长过程中所起到的作用。旨在进一步阐述表观遗传修饰在骨骼肌增殖和分化过程中所起到的重要作用,增强对骨骼肌增殖分化调控过程的了解,为和动物生产实际相结合提供参考途径,同时也为骨骼肌生长发育等分子调控提供更多参考素材。
中图分类号:
敬敬, 姚东, 凌英会. 表观遗传修饰在骨骼肌细胞增殖分化过程中的研究进展[J]. 中国畜牧兽医, 2020, 47(10): 3314-3322.
JING Jing, YAO Dong, LING Yinghui. Research Progress of Epigenetics Modification in the Process of Skeletal Muscle Cell Proliferation and Differentiation[J]. China Animal Husbandry and Veterinary Medicine, 2020, 47(10): 3314-3322.
[1] | 岳炳霖,陈宏.microRNAs调控动物骨骼肌细胞发育的研究进展[J].中国牛业科学,2015,41(5):70-76. YUE B L,CHEN H.Research progress on microRNAs regulating animal skeletal muscle cell development[J].China Cattle Science,2015,41(5):70-76.(in Chinese) |
[2] | SCHEJTER E D.Myoblast fusion:Experimental systems and cellular mechanisms[J].Seminars in Cell and Developmental Biology,2016,60:112-120. |
[3] | HUANG W,GUO L,ZHAO M,et al.The inhibition on MDFIC and PI3K/AKT pathway caused by miR-146b-3p triggers suppression of myoblast proliferation and differentiation and promotion of apoptosis[J].Cells,2019,8(7):656. |
[4] | GIORDANI L,PARISI A,LE GRAND F.Satellite cell self-renewal[J].Current Topics in Developmental Biology,2018,126:177-203. |
[5] | FRONTERA W R,OCHALA J.Skeletal muscle:A brief review of structure and function[J].Calcified Tissue International,2015,96(3):183-195. |
[6] | BARREIRO E,TAJBAKHSH S.Epigenetic regulation of muscle development[J].Journal of Muscle Research and Cell Motility,2017,38(1):31-35. |
[7] | MOORE L D,LE T,FAN G.DNA methylation and its basic function[J].Neuropsychopharmacology,2013,38(1):23-38. |
[8] | SCHUBELER D.Function and information content of DNA methylation[J].Nature,2015,517(7534):321-326. |
[9] | BREULS N,GIACOMAZZI G,SAMPAOLESI M.Epi genetic modifications in myogenic stem cells:From novel insights to therapeutic perspectives[J].Cells,2019,8(5):429. |
[10] | TRIANTAPHYLLOPOULOS K A,IKONOMOPOULOS I,BANNISTER A J.Epigenetics and inheritance of phenotype variation in livestock[J].Epigenetics Chro-matin,2016,9(1):31. |
[11] | HAMIDI T,SINGH A K,CHEN T.Genetic alterations of DNA methylation machinery in human diseases[J].Epigenomics,2015,7(2):247-265. |
[12] | BANNISTER A J,KOUZARIDES T.Regulation of chromatin by histone modifications[J].Cell Research,2011,21(3):381-395. |
[13] | 李泰.G9A介导的Histone H3 lysine9甲基化作用在自噬调控中的分子基础[D].重庆:西南大学,2014. LI T.The molecular basis of G9A-mediated H3K9 methylation in autophagy regulation[D].Chongqing:Southwest University,2014.(in Chinese) |
[14] | STERNER D E,BERGER S L.Acetylation of histones and transcription-related factors[J].Microbiology and Molecular Biology Reviews,2000,64(2):435-459. |
[15] | HOWLETT K F,MCGEE S L.Epigenetic regulation of skeletal muscle metabolism[J].Clincial Science,2016,130(13):1051-1063. |
[16] | BROWN J A L.In vitro histone acetylation assay[J].Current Protocols in Pharmacology,2017,79(1):3.14.1-3.14.16. |
[17] | BEN-YAIR R,KALCHEIM C.Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates[J].Development,2005,132(4):689-701. |
[18] | SHEN Y,WEI W,ZHOU D X.Histone acetylation enzymes coordinate metabolism and gene expression[J].Trends in Plant Science,2015,20(10):614-621. |
[19] | 付汉江.非编码RNA克隆分析及其功能初步研究[D].北京:中国人民解放军军事医学科学院,2005. FU H J.Analysis of cloning of non-coding RNA and preliminary study of its function[D].Beijing:Chinese Academy of Military Medical Sciences,2005.(in Chinese) |
[20] | HO L,CRABTREE G R.Chromatin remodelling during development[J].Nature,2010,463(7280):474-484. |
[21] | 冯紫婷,安清明,王大会,等.miRNA调控家畜肌肉组织生长发育的研究进展[J].中国畜牧杂志,2020,56(7):1-5. FENG Z T,AN Q M,WANG D H,et al.Advances in the regulation of muscle tissue growth and development by microRNAs in livestock[J].Chinese Journal of Animal Husbandry,2020,56(7):1-5.(in Chinese) |
[22] | MCCORMICK R,GOLJANEK-WHYSALL K.microRNA dysregulation in aging and pathologies of the skeletal muscle[J].International Review of Cell and Molecular Biology,2017,334:265-308. |
[23] | 周瑞,王以鑫,龙科任,等.lncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J].遗传,2018,40(4):292-304. ZHOU R,WANG Y X,LONG K R,et al.Regulatory mechanism for lncRNAs in skeletal muscle develo-pment and progress on its research in domestic animals[J].Hereditas,2018,40(4):292-304.(in Chinese) |
[24] | CHARLES R J L,EICHHORN P J A.Platforms for investigating lncRNA functions[J].SLAS Technology,2018,23(6):493-506. |
[25] | 聂庆华,徐海平,张敏.非编码RNAs调控家禽骨骼肌生长发育的表观遗传机制研究进展[J].华南农业大学学报,2019,40(5):111-118. NIE Q H,XU H P,ZHANG M.Research progress on epigenetic mechanisms of noncoding RNAs regulating avian skeletal muscle development[J].Journal of South China Agricultural University,2019,40(5):111-118.(in Chinese) |
[26] | JU Y,YUAN L,YANG Y,et al.CircSLNN:Identifying RBP-binding sites on circRNAs via sequence labeling neural networks[J].Frontiers in Genetics,2019,10:1184. |
[27] | KOPANTSEVA E E,BELYAVSKY A V.Key regulators of skeletal myogenesis[J].Molecular Biology (Mosk),2016,50(2):195-222. |
[28] | HARADA A,OHKAWA Y,IMBALZANO A N.Temporal regulation of chromatin during myoblast differentiation[J].Seminars in Cell and Developmental Biology,2017,72:77-86. |
[29] | 李亮亮,李冬娜,杜乐,等.染色质重塑及其在白血病分子机制中的研究进展[J].海南医学院学报,2019,25(22):1752-1755. LI L L,LI D N,DU L,et al.Advances in chromatin remodeling and its role in the molecular mechanism of leukemia[J].Journal of Hainan Medical College,2019,25(22):1752-1755.(in Chinese) |
[30] | ARCHACKI R,YATUSEVICH R,BUSZEWICZ D,et al.Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression[J].Nucleic Acids Research,2017,45(6):3116-3129. |
[31] | HOTA S K,BRUNEAU B G.ATP-dependent chromatin remodeling during mammalian deve-lopment[J].Development,2016,143(16):2882-2897. |
[32] | ZAMMIT P S,RELAIX F,NAGATA Y,et al.Pax7 and myogenic progression in skeletal muscle satellite cells[J].Journal of Cell Science,2006,119(Pt 9):1824-1832. |
[33] | 何剑雄.猪WFIKKN2基因启动子区甲基化及mRNA表达水平研究[D].南宁:广西大学,2018. HE J X.The promoter region methalation status and mrna expression of WFIKKN2 gene in pig[D].Nanning:Guangxi University,2018.(in Chinese) |
[34] | LAKER R C,RYALL J G.DNA methylation in skeletal muscle stem cell specification,proliferation,and differentiation[J].Stem Cells International,2016,2016:5725927. |
[35] | JONES P A.Functions of DNA methylation:Islands,start sites,gene bodies and beyond[J].Nature Reviews Genetics,2012,13(7):484-492. |
[36] | 李秀金,王金辉,黄运茂,等.DNA甲基化影响不同猪种胚胎期肌肉发育差异的研究进展[J].中国畜牧杂志,2020,56(6):24-29. LI X J,WANG J H,HUANG Y M,et al.Research progresses on the role of DNA methylation in regulating distinct embryonic muscle development among pig breeds[J].Chinese Journal of Animal Husbandry,2020,56(6):24-29.(in Chinese) |
[37] | IURLARO M,VON MEYENN F,REIK W.DNA methylation homeostasis in human and mouse development[J].Current Opinion in Genetics and Devlopment,2017,43:101-109. |
[38] | HUANG Y Z,SUN J J,ZHANG L Z,et al.Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine)[J].Scientific Reports,2014,4:6546. |
[39] | LI S,ZHU Y,ZHI L,et al.DNA methylation variation trends during the embryonic development of chicken[J].PLoS One,2016,11(7):e0159230. |
[40] | JOUNG H,KWON S,KIM K H,et al.Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis[J].Experimental and Molecular Medicine,2018,50(1):427. |
[41] | MA Y,LI Q,LI A,et al.The CSRP2BP histone acetyltransferase drives smooth muscle gene expression[J].Nucleic Acids Research,2017,45(6):3046-3058. |
[42] | 甘炎民,周健,全绒,等.组蛋白H3K27me3对骨骼肌发育调控研究进展[J].遗传,2019,41(4):285-292. GAN Y M,ZHOU J,QUAN R,et al.Histone H3K27me3 in the regulation of skeletal muscle development[J].Hereditas,2019,41(4):285-292.(in Chinese) |
[43] | WEI C,REN H,XU L,et al.Signals of Ezh2,Src,and Akt involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation[J].PLoS One,2015,10(3):e0120956. |
[44] | MOK G F,LOZANO-VELASCO E,MUNSTERBERG A.microRNAs in skeletal muscle development[J].Seminars in Cell and Developmental Biology,2017,72:67-76. |
[45] | LI L,SONG Y,SHI X,et al.The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting[J].Genome Research,2018,28(1):132-143. |
[46] | YU H,LU Y,LI Z,et al.microRNA-133:Expression,function and therapeutic potential in muscle diseases and cancer[J].Current Drug Targets,2014,15(9):817-828. |
[47] | WOUTER R P H W,ANNEMIE M W J S,ANNE-MARIE C D,et al.Identification of microRNAs in skeletal muscle associated with lung cancer cachexia[J].Journal of Cachexia,Sarcopenia and Muscle,2020,11(2):452-463. |
[48] | QUATTROCELLI M,SAMPAOLESI M.The mesmiRizing complexity of microRNAs for striated muscle tissue engineering[J].Advanced Drug Delivery Reviews,2015,88:37-52. |
[49] | WANG S,JIN J,XU Z,et al.Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis,muscle disease and meat production[J].Cells,2019,8(9):1107. |
[50] | NESTEROVA T B,POPOVA B C,COBB B S,et al.Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a[J].Epigenetics Chromatin,2008,1(1):2. |
[51] | MOHAMMAD F,MONDAL T,GUSEVA N,et al.Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1[J].Development,2010,137(15):2493-2499. |
[52] | 胡亮,侯敢,黄迪南.长链非编码RNA与表观遗传调控[J].基因组学与应用生物学,2016,35(12):3319-3324. HU L,HOU G,HUANG D N.Long non-coding RNAs and epigenetic regulation[J].Genomics and Applied Biology,2016,35(12):3319-3324.(in Chinese) |
[53] | ZHU M,LIU J,XIAO J,et al.Lnc-mg is a long non-coding RNA that promotes myogenesis[J].Nature Commununications,2017,8:14718. |
[54] | 魏雪锋.miR-378a-3p、miR-107和相关circRNA调控牛肌细胞发育的机制研究[D].杨凌:西北农林科技大学,2017. WEI X F.Mechanism study on mir-378a-3p,mir-107 and related circRNA regulating bovine myoblasts deve-lopment[D].Yangling:Northwest A&F University,2017.(in Chinese) |
[55] | CHEN B,YU J,GUO L,et al.Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p[J].Cells,2019,8(2):177. |
[56] | BAKER C L,WALKER M,ARAT S,et al.Tissue-specific trans regulation of the mouse epigenome[J].Genetics,2019,211(3):831-845. |
[57] | ASP P,BLUM R,VETHANTHAM V,et al.Genome-wide remodeling of the epigenetic landscape during myogenic differentiation[J].Proceedings of the National Academyof Science,2011,108(22):E149-E158. |
[58] | 曹雷,郭利娟,郭晓锦,等.癌症液体活检新思路:数字PCR检测DNA甲基化[J].生物化学与生物物理进展,2019,46(11):1085-1100. CAO L,GUO L J,GUO X J,et al.New path of cancer liquid biopsy:DNA methylation detection by digital PCR[J].Advances in Biochemistry and Biophysics,2019,46(11):1085-1100.(in Chinese) |
[59] | BIRESSI S,BJORNSON C R,CARLIG P M,et al.Myf5 expression during fetal myogenesis defines the developmental progenitors of adult satellite cells[J].Developmental Biology,2013,379(2):195-207. |
[60] | KIRBY T J,CHAILLOU T,MCCARTHY J J.The role of microRNAs in skeletal muscle health and disease[J].Frontiers in Bioscience (Landmark Edition),2015,20:37-77. |
[61] | BALLARINO M,MORLANDO M,FATICA A,et al.Non-coding RNAs in muscle differentiation and musculoskeletal disease[J].Journal of Clinical Investigation,2016,126(6):2021-2030. |
[62] | LI G,LUO W,ABDALLA B A,et al.miRNA-223 upregulated by MyoD inhibits myoblast proliferation by repressing IGF2 and facilitates myoblast differentiation by inhibiting ZEB1[J].Cell Death and Disease,2017,8(10):e3094. |
[63] | GUO L,HUANG W,CHEN B,et al.gga-mir-133a-3p regulates myoblasts proliferation and differentiation by targeting PRRX1[J].Frontiers in Genetics,2018,9:577. |
[64] | GUTTMAN M,RINN J L.Modular regulatory principles of large non-coding RNAs[J].Nature,2012,482(7385):339-346. |
[65] | HANSEN T B,JENSEN T I,CLAUSEN B H,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388. |
[66] | CHEN X,OUYANG H,WANG Z,et al.A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p[J].Cells,2018,7(11):199. |
[67] | CHEN R,LEI S,JIANG T,et al.Roles of lncRNAs and circRNAs in regulating skeletal muscle development[J].Acta Physiologica,2020,228(2):e13356. |
[68] | LANGLOIS S,COWAN K N.Regulation of skeletal muscle myoblast differentiation and proliferation by pannexins[J].Advances in Experimental Medicine and Biology,2017,925:57-73. |
[69] | ALBINI S,PURI P L.SWI/SNF complexes,chromatin remodeling and skeletal myogenesis:It's time to exchange![J].Experimental Cell Research,2010,316(18):3073-3080. |
[1] | 杨瑰桃, 马继登, 李学伟, 葛良鹏, 张进威. 短链脂肪酸调控骨骼肌生理功能研究进展[J]. 中国畜牧兽医, 2023, 50(6): 2286-2295. |
[2] | 肖鹏, 尚江华, 杨春艳, 李孟琪, 段安琴, 马小娅, 冯超, 黄晨茜, 张博, 周金陈, 韦科龙, 郑威, 郑海英. α-亚麻酸对水牛卵巢颗粒细胞体外培养的影响[J]. 中国畜牧兽医, 2023, 50(6): 2380-2387. |
[3] | 李灿, 李楚楚, 曾维, 张宁, 纪春晓, 陈韬. 猪RegⅢγ蛋白的重组表达及功能研究[J]. 中国畜牧兽医, 2023, 50(6): 2414-2426. |
[4] | 武志娟, 柴志欣, 王吉坤, 王嘉博, 钟金城, 信金伟. 牦牛骨骼肌中特异基质金属蛋白酶及其功能相关基因的表达分析[J]. 中国畜牧兽医, 2023, 50(5): 1774-1784. |
[5] | 孟超群, 李成萍, 赵薇, 秦旭勇, 周国利. miR-137-3p靶向MAX基因对前脂肪细胞3T3-L1成脂分化的影响[J]. 中国畜牧兽医, 2023, 50(5): 1928-1937. |
[6] | 李中波, 侯强红, 段德勇. 不同种群白纹伊蚊单倍型多态性、遗传分化及种系发育关系分析[J]. 中国畜牧兽医, 2023, 50(4): 1452-1460. |
[7] | 甄珍, 王梅, 王轶敏, 胡德宝, 张林林, 李新, 郭益文, 郭宏, 丁向彬. RNA甲基化转移酶METTL3对牛骨骼肌卫星细胞增殖与成肌分化的影响[J]. 中国畜牧兽医, 2023, 50(3): 1025-1036. |
[8] | 田书岳, 神英超, 王希生, 王敏, 伊敏娜, 才文道力玛, 陶力, 赵毕力格, 芒来, 格日乐其木格. 蒙古马胎儿成纤维细胞永生化细胞体系建立的研究[J]. 中国畜牧兽医, 2023, 50(1): 46-57. |
[9] | 谭皓云, 刘茜, 胡德宝, 张林林, 李新, 丁向彬, 郭宏, 郭益文. 干扰lnc721对牛骨骼肌卫星细胞增殖与分化的影响[J]. 中国畜牧兽医, 2022, 49(9): 3292-3300. |
[10] | 高晓敏, 周舒简, 陈晨, 金晶, 胡菜, 张晨, 左其生, 张亚妮, 陈国宏, 李碧春. STAT1和组蛋白乙酰化修饰调控鸡lncRNA-BMP4转录研究[J]. 中国畜牧兽医, 2022, 49(9): 3321-3332. |
[11] | 高也凡, 宋哈楠, 王育南, 吴月, 牛锐利, 宗宪春, 关伟军. 北京油鸡角膜缘干细胞分离培养及分化潜能研究[J]. 中国畜牧兽医, 2022, 49(9): 3372-3381. |
[12] | 王学方, 归荣, 陈功义, 王伟, 张红英, 王学兵, 李晓. 连花柴芩可溶性粉对鸡风热犯肺证的临床试验研究[J]. 中国畜牧兽医, 2022, 49(9): 3610-3621. |
[13] | 王楠, 冯保亮, 郑云曦, 黄雷, 王悦, 徐松松, 张秀玲, 刘志国, 李奎, 牟玉莲. WIP1基因对3T3-L1前脂肪细胞增殖分化的影响及其在小鼠不同生长阶段的表达[J]. 中国畜牧兽医, 2022, 49(8): 2869-2879. |
[14] | 张雪萍, 石斌刚, 金夏阳, 王向彦, 兰丽娟, 时钰, 祁有鹏, 赵世杰, 李少斌, 胡江. 藏绵羊KLF7基因表达特征分析及其过表达对前脂肪细胞增殖分化的影响[J]. 中国畜牧兽医, 2022, 49(8): 2920-2930. |
[15] | 喻宗岗, 马海明. 猪骨骼肌卫星细胞体外分离培养研究进展[J]. 中国畜牧兽医, 2022, 49(8): 2931-2942. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||