China Animal Husbandry and Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (10): 4191-4199.doi: 10.16431/j.cnki.1671-7236.2024.10.001
• Biotechnology • Previous Articles Next Articles
WU Shangjie, LI Jiajia, JIANG Lin, MA Yuehui, DING Jiabo, HE Xiaohong
Received:
2024-04-08
Online:
2024-10-05
Published:
2024-09-30
CLC Number:
WU Shangjie, LI Jiajia, JIANG Lin, MA Yuehui, DING Jiabo, HE Xiaohong. Genome-wide Association Study of Anti-brucellosis Traits Based on cELISA Detection in Sheep[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(10): 4191-4199.
[1] PAPPAS G,PAPADIMITRIOU P,AKRITIDIS N,et al. The new global map of human brucellosis[J]. The Lancet Infectious Diseases,2006,6(2): 91-99. [2] CAO X,LI S,LI Z,et al. Enzootic situation and molecular epidemiology of Brucella in livestock from 2011 to 2015 in Qingyang,China[J]. Emerging Microbes & Infections,2018,7(1): 58. [3] YANG X,PIAO D,MAO L,et al. Whole-genome sequencing of rough Brucella melitensis in China provides insights into its genetic features[J]. Emerging Microbes & Infections,2020,9(1): 2147-2156. [4] OLSEN S C,STOFFREGEN W S. Essential role of vaccines in brucellosis control and eradication programs for livestock[J]. Expert Review of Vaccines,2005,4(6): 915-928. [5] XU N,DONG X,YAO Y,et al. Improved early detection of focal brucellosis complications with anti-Brucella IgG[J]. Journal of Clinical Microbiology,2020,58(10): e00903-20. [6] MANTECÓN M D L A,GUTIÉRREZ M P,ZARZOSA M D P,et al. Influence of brucellosis history on serological diagnosis and evolution of patients with acute brucellosis[J]. The Journal of Infection,2008,57(5): 397-403. [7] YAGUPSKY P,MORATA P,COLMENERO J D. Laboratory diagnosis of human brucellosis[J]. Clinical Microbiology Reviews,2019,33(1): e00073-19. [8] TAM V,PATEL N,TURCOTTE M,et al. Benefits and limitations of genome-wide association studies[J]. Nature Reviews Genetics,2019,20(8): 467-484. [9] KLEIN R J,ZEISS C,CHEW E Y,et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science,2005,308(5720): 385-389. [10] BENAVIDES M V,SONSTEGARD T S,KEMP S,et al. Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai×Dorper backcross population[J]. PLoS One,2015,10(4): e0122797. [11] PSIFIDI A,BANOS G,MATIKA O,et al. Genome-wide association studies of immune,disease and production traits in indigenous chicken ecotypes[J]. Genetics,Selection,Evolution,2016,48(1): 74. [12] LI X,WU Q,ZHANG X,et al. Whole-genome resequencing to study brucellosis susceptibility in sheep[J]. Frontiers in Genetics,2021,12: 653927. [13] PIERCE C F,BROWN V R,OLSEN S C,et al. Loci associated with antibody response in feral swine (Sus scrofa) infected with Brucella suis[J]. Frontiers in Veterinary Science,2020,7: 554674. [14] ALCOVER A,ALARCÓN B,DI BARTOLO V. Cell biology of T cell receptor expression and regulation [J].Annual Review of Immunology,2018,36: 103-125. [15] HANOT MAMBRES D,MACHELART A,POTEMBERG G,et al. Identification of immune effectors essential to the control of primary and secondary intranasal infection with Brucella melitensis in mice[J]. Journal of Immunology,2016,196(9): 3780-3793. [16] CHOPP L B,GOPALAN V,CIUCCI T,et al. An integrated epigenomic and transcriptomic map of mouse and human αβ T cell development[J]. Immunity,2020,53(6): 1182-1201. [17] GOODWIN Z I,YANG X,HOFFMAN C,et al. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge[J]. Frontiers in Immunology,2022,13: 995327. [18] KELEHER L L,SKYBERG J A. Activation of bovine neutrophils by Brucella spp[J]. Veterinary Immunology and Immunopathology,2016,177: 1-6. [19] AU-YEUNG B B,SHAH N H,SHEN L,et al. ZAP-70 in signaling,biology,and disease[J]. Annual Review of Immunology,2018,36: 127-156. [20] SALLAM A M,ABOU-SOULIMAN I,REYER H,et al. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats[J]. Scientific Reports,2023,13(1): 20086. [21] OUYANG W,OH S A,MA Q,et al. TGF-β cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression[J]. Immunity,2013,39(2): 335-346. [22] OUYANG W,BECKETT O,MA Q,et al. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development[J]. Immunity,2010,32(5): 642-653. [23] RAFIEI A,ARDESTANI S K,KARIMINIA A,et al. Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease[J]. The Journal of Infection,2006,53(5): 315-324. [24] ZHENG R,XIE S,ZHANG Q,et al. Circulating Th1,Th2,Th17,Treg,and PD-1 levels in patients with brucellosis[J]. Journal of Immunology Research,2019,2019: 3783209. [25] MIOSSEC P,KOLLS J K. Targeting IL-17 and TH17 cells in chronic inflammation[J]. Nature Reviews Drug Discovery,2012,11(10): 763-776. [26] ZHU Y,SHI L,ZENG Y,et al. Key immunity characteristics of diverse stages of brucellosis in rural population from Inner Mongolia,China[J]. Infectious Diseases of Poverty,2022,11(1): 63. [27] RAHMANPOUR M,KERAMAT F,JOURGHASEMI S,et al. Direct correlation between Th1 and Th17 responses in immunity to Brucella infection[J]. Microbes and Infection,2019,21(10): 441-448. [28] LI Y,ZHAO R,CHENG K,et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition[J]. ACS Nano,2020,14(12): 16698-16711. [29] AVILA-CALDERÓN E D,MEDINA-CHÁVEZ O,FLORES-ROMO L,et al. Outer membrane vesicles from Brucella melitensis modulate immune response and induce cytoskeleton rearrangement in peripheral blood mononuclear cells[J]. Frontiers in Microbiology,2020,11: 556795. [30] BHAGYARAJ E,WANG H,YANG X,et al. Mucosal vaccination primes NK cell-dependent development of CD8+ T cells against pulmonary Brucella infection[J]. Frontiers in Immunology,2021,12: 697953. [31] LI G,LV D,YAO Y,et al. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J]. FASEB Journal,2021,35(9): e21783. [32] PESCE VIGLIETTI A I,GIAMBARTOLOMEI G H,DELPINO M V. Endocrine modulation of Brucella abortus-infected osteocytes function and osteoclastogenesis via modulation of RANKL/OPG[J]. Microbes and Infection,2019,21(7): 287-295. [33] PESCE VIGLIETTI A I,ARRIOLA BENITEZ P C,GENTILINI M V,et al. Brucella abortus invasion of osteocytes modulates connexin 43 and integrin expression and induces osteoclastogenesis via receptor activator of NF-κB ligand and tumor necrosis factor alpha secretion[J]. Infection and Immunity,2016,84(1): 11-20. [34] DELPINO M V,BARRIONUEVO P,MACEDO G C,et al. Macrophage-elicited osteoclastogenesis in response to Brucella abortus infection requires TLR2,MyD88-dependent TNF-α production[J]. Journal of Leukocyte Biology,2012,91(2): 285-298. [35] TERASHIMA A,TAKAYANAGI H. The role of bone cells in immune regulation during the course of infection[J]. Seminars in Immunopathology,2019,41(5): 619-626. [36] LI J Y,LIU Y,GAO X X,et al. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production,functional upregulation of mouse macrophages,and the Th1 immune response in vivo and in vitro[J]. Cellular & Molecular Immunology,2014,11(5): 477-494. [37] RAYAMAJHI M,HUMANN J,PENHEITER K,et al. Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma[J]. The Journal of Experimental Medicine,2010,207(2): 327-337. [38] HASENAUER F C,ROSSI U A,CAFFARO M E,et al. Association of TNF rs668920841 and INRA111 polymorphisms with caprine brucellosis: A case-control study of candidate genes involved in innate immunity[J]. Genomics,2020,112(6): 3925-3932. [39] ZHU L,ZHOU X,GU M,et al. Dapl1 controls NFATc2 activation to regulate CD8+ T cell exhaustion and responses in chronic infection and cancer[J]. Nature Cell Biology,2022,24(7): 1165-1176. |
[1] | MA Sijia, ZHAO Zhengwei, WANG Jin, MA Lina. Discovering Key Genes in Hair Follicle Development of Tan Sheep at Different Days of Age Based on Transcriptome Data [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(9): 3726-3738. |
[2] | QIU Dongxu, LYU Lang, PI Xiangcheng, FENG Yu, JIANG Hui, CHEN Xiang, DING Jiabo. Research Progress on Brucellosis Vaccine for Sheep and Goat [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(9): 4043-4051. |
[3] | RAN Yang, QIU Jie, SHEN Xiaoyun. Response of Fattening Hu Sheep to Cecropin Antimicrobial Peptides [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(8): 3385-3393. |
[4] | ZHANG Yan, MA Sen, LI Shouren, HUANGFU Weikang, LA Shaokai, MA Jixiang, WANG Zhichang, SHI Yinghua. Effects of Alfalfa Saponin Extract on Immunity,Antioxidant Capacity and Rumen Microflora of Weaned Hu Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(7): 2799-2809. |
[5] | XIAO Min, Alder, GONG Jian. Effect of Mannitol on Rumen and Fecal Microbiome Structure,Serum Antioxidant and Immune Indices of Grazing Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(7): 2860-2870. |
[6] | REN Feier, YANG Fan, LI Minghao, LIANG Yingtao, REN Jie, ABDURAHMU Ehmeti, CHEN Kaixu. Effects of Different Levels of Dietary Ellagic Acid Supplementation on Growth Performance,Blood Biochemical Indices and Antioxidant Capacity of Kazakh Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(7): 2899-2907. |
[7] | WANG Yuqi, HE Sangang, LIANG Long, HAILATI Kasimu, JIAO Wenjing, YUE Chenbing, HAN Bing, SONG Xuebin, YAN Xiaofei. Effect of Different Factors on the Infection of Gastrointestinal Nematodes in Teha Crossbred Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(7): 3067-3076. |
[8] | JIANG Lu, LIANG Bencong, XU Zejun, YANG Gaiqing, YANG Sihan, CHEN Qixin, WANG Xianwei, HU Yeyong, WANG Linfeng, GAO Tengyun. Effects of Guanidine Acetic Acid and Alpha-lipoic Acid Supplementation on Rumen Microbita and Metabolites in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(6): 2375-2387. |
[9] | WANG Zhenguo, LI Hansen, ZHANG Li, ZHOU Qian, SHI Juanjuan, SHI Lei, REN Youshe. The Effect of Astragalus Polysaccharides on Cryopreservation of Semen in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(5): 2007-2014. |
[10] | HUANG Qiaoyan, LI Wei, WANG Xinkun, XING Feng. Cloning,Bioinformatics and Tissue Differential Expression Analysis of PROKR2 Gene in Dolang Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(4): 1339-1348. |
[11] | XU Tiantian, HU Fan, WANG Xue, WU Zhiwu, YE Bingsen, WEI Lingyun, HE Zhixiong, TAN Zhiliang. Effect of High Concentrated of Rumen Protected Fat on Glucose and Insulin Tolerance in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(4): 1448-1455. |
[12] | WANG Yu, SHI Song, JIN Panhao, LI Jinxin, ZHANG Mingxi, LI Tuo, LI Longping, QU Lei, DONG Shuwei. Isolation,Identification and Detection of Resistance and Virulence Genes of Pathogenic Bacteria Causing Mastitis in Some Areas of Yulin [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(4): 1746-1756. |
[13] | ZHANG Xiao, LI Xuanyue, WANG Lei, FANG Meiyan, TIAN Congcong, DI Mingyue, CHEN Yong. Effects of Walnut Green Husk Extracts on in vitro Rumen Fermentation and Microbiota Community in Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 967-977. |
[14] | LI Chunxin, QIAO Hongxing, WANG Huiwei, FAN Mingxia, WANG Jiwen. Effects of Compound Fermentation of Traditional Chinese Medicine and Cyperus esculentus on Growth Performance,Serum Antioxidant and Immune Indexes in Hu Sheep [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 990-998. |
[15] | WANG Hechuan, LI Tianfeng, ZHANG Han, SONG Yulun, FENG Heze, WEI Yao, CHENG Ye, LI Yongxin, DONG Yingying, YIN Guoan, GUO Qing, CUI Weiguo, LI Jingchun. Effect of Feeding Zinc Lysine on Plasma Biochemical Indices and Sperm Quality of Hu Sheep Rams in Autumn in Northeastern China [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 558-567. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 197
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||