[1] SOUTOURINA J.Transcription regulation by the Mediator complex[J].Nature Reviews Molecular Cell Biology,2018,19(4):262-274. [2] ASTURIAS F J,JIANG Y W,MYERS L C,et al.Conserved structures of mediator and RNA polymerase Ⅱ holoenzyme[J].Science,1999,283(5404):985-987. [3] RICHTER W F,NAYAK S,IWASA J,et al.The mediator complex as a master regulator of transcription by RNA polymerase Ⅱ[J].Nature Reviews Molecular Cell Biology,2022,23(11):732-749. [4] ZHANG L,MAUL R S,RAO J,et al.Expression pattern of the novel gene EG-1 in cancer [J].Clinical Cancer Research,2004,10(10):3504-3508. [5] WIEDERHOLD T,LEE M F,JAMES M,et al.Magicin,a novel cytoskeletal protein associates with the NF2 tumor suppressor merlin and Grb2[J].Oncogene,2004,23(54):8815-8825. [6] KIM J,ZHANG X,RIEGER-CHRIST K M,et al.Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells.Requirement of the transcriptional repressor HBP1[J].Journal of Biological Chemistry,2006,281(16):10865-10875. [7] CHEN Y C,ZHANG X W,NIU X H,et al.Macrophage migration inhibitory factor is a direct target of HBP1-mediated transcriptional repression that is overexpressed in prostate cancer[J].Oncogene,2010,29(21):3067-3078. [8] CHO J G,CHOI J S,LEE J H,et al.MED28 over-expression shortens the cell cycle and induces genomic instability[J].International Journal of Molecular Sciences,2019,20(7):1746. [9] SANCHEZ M P,TRIBOUT T,KADRI N K,et al.Sequence-based GWAS Meta-analyses for beef production traits[J].Genetics Selection Evolution,2023,55(1):70. [10] LINDHOLM-PERRY A K,SEXTEN A K,KUEHN L A,et al.Association,effects and validation of polymorphisms within the NCAPG-LCORL locus located on BTA6 with feed intake,gain,meat and carcass traits in beef cattle[J].BMC Genetics,2011,12:103. [11] SANTIAGO G G,SIQUEIRA F,CARDOSO F F,et al.Genomewide association study for production and meat quality traits in Canchim beef cattle[J].Journal of Animal Science,2017,95(8):3381-3390. [12] NIU Q,ZHANG T,XU L,et al.Identification of candidate variants associated with bone weight using whole genome sequence in beef cattle[J].Frontiers in Genetics,2021,12:750746. [13] RAMOS Z,GARRICK D J,BLAIR H T,et al.Genomic regions associated with wool,growth and reproduction traits in Uruguayan Merino sheep[J].Genes (Basel),2023,14(1):167. [14] AL-MAMUN H A,KWAN P,CLARK S A,et al.Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight[J].Genetics Selection Evolution,2015,47(1):66. [15] 葛玲.6号染色体37-38 Mb区域候选基因功能研究及其启动子区SNPs与苏湖肉羊选育群生长发育性状关联分析[D].扬州:扬州大学,2023. GE L.Functional study of candidate gene in the 37-38 Mb region of chromosome 6 and association analysis of SNPs in the in the promotor reigion with growth and development traits in Suhu sheep breeding population[D].Yangzhou:Yangzhou University,2023.(in Chinese). [16] ZHUANG X,XIE F,LIN Z,et al.Effect of miR-493-5p on proliferation and differentiation of myoblast by targeting ANKRD17[J].Cell and Tissue Research,2023,393(1):119-132. [17] YANG S,NING C,YANG C,et al.Identify candidate genes associated with the weight and egg quality traits in Wenshui Green shell-laying chickens by the copy number variation-based genome-wide association study[J].Veterinary Sciences,2024,11(2):76. [18] LEE M F,HSIEH N T,HUANG C Y,et al.All trans-retinoic acid mediates MED28/HMG box-containing protein 1 (HBP1)/beta-catenin signaling in human colorectal cancer cells[J].Journal of Cellular Physiology,2016,231(8):1796-1803. [19] JEONG J Y,KIM J S,NGUYEN T H,et al.Wnt/beta-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle[J].Animal Genetics,2013,44(6):627-635. [20] ANTON I,HÚTH B,FÜLLER I,et al.Effect of single nucleotide polymorphisms on intramuscular fat content in Hungarian Simmental cattle[J].Asian-Australas Journal of Animal Sciences,2018,31(9):1415-1419. [21] VARGAS-FRANCO D,KALRA R,DRAPER I,et al.The Notch signaling pathway in skeletal muscle health and disease[J].Muscle Nerve,2022,66(5):530-544. [22] BEYER K S,BEAUCHAMP R L,LEE M F,et al.Mediator subunit MED28 (Magicin) is a repressor of smooth muscle cell differentiation[J].Journal of Biological Chemistry,2007,282(44):32152-32157. [23] 李向群,李龙飞,李哲.谷氨酰胺对免疫应激肉仔鸡免疫机能的影响[J].饲料研究,2019,42(11):38-41. LI X Q,LI L F,LI Z.Effect of glutamine on immune function of broilers under immune stress[J].Feed Research,2019,42(11):38-41.(in Chinese) [24] 张柏林,刘宁,李春涛,等.谷氨酰胺对动物肠道结构及机能影响的研究进展[J].安徽农业科学,2017,45(31):106-108. ZHANG B L,LIU N,LI C T,et al.Research progress on the effects of glutamine on intestinal structure and function of animal[J].Journal of Anhui Agricultural Sciences,2017,45(31):106-108.(in Chinese) [25] 贾翼菲,王雅梅,李功玉.蛋白质糖基化修饰的非变性构象分辨质谱研究进展[J].中国药科大学学报,2023,54(6):674-681. JIA Y F,WANG Y M,LI G Y.Recent progress of protein glycosylation characterization utilizing native conformer-resolved mass spectrometry[J].Journal of China Pharmaceutical University,2023,54(6):674-681.(in Chinese) [26] 李佳丽,宋泽庆,刘刚.蛋白质糖基化与疾病关系的研究进展[J].海南医学,2023,34(4):589-592. LI J L,SONG Z Q,LIU G.Research progress on the relationship between protein glycosylation and disease[J].Hainan Medical Journal,2023,34(4):589-592.(in Chinese) [27] 谭锬,柯柏怡,梁前进.蛋白质磷酸化修饰及其在细胞周期调控中的作用研究进展[J].北京师范大学学报(自然科学版),2024,60(9):38-45. TAN T,KE B Y,LIANG Q J.Research progress on phosphorylation modification of protein and its role in cell cycle regulation[J].Journal of Beijing Normal University (Natural Science),2024,60(9):38-45.(in Chinese) [28] GETZ L J,RUNTE C S,RAINEY J K,et al.Tyrosine phosphorylation as a widespread regulatory mechanism in prokaryotes[J].Journal of Bacteriology,2019,201(19):e00205-19. [29] LIM S,KALDIS P.Cdks,cyclins and CKIs:Roles beyond cell cycle regulation[J].Development,2013,140(15):3079-3093. [30] AKEKAWATCHAI C,JITRAPAKDEE S.Cellular signals integrate cell cycle and metabolic control in cancer[J].Advances in Protein Chemistry and Structural Biology,2023,135:397-423. [31] SIN J,ANDRES A M,TAYLOR D J,et al.Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts[J].Autophagy,2016,12(2):369-380. [32] YUE B,YANG H,WU J,et al.circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation[J].Science China Life Sciences,2022,65(2):376-386. [33] JOHANNESSEN M,MYHRE M R,DRAGSET M,et al.Phosphorylation of Human polyomavirus BK agnoprotein at Ser-11 is mediated by PKC and has an important regulative function[J].Virology,2008,379(1):97-109. [34] MUKBA S A,VLASOV P K,KOLOSOV P M,et al.Expanding the genetic code:Unnatural base pairs in biological systems[J].Molecular Biology,2020,54(4):475-484. [35] LEE Y C,KIM Y J.Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase Ⅱ transcription[J].Molecular Cellular Biology,1998,18(9):5364-5370. [36] SATO S,TOMOMORI-SATO C,TSAI K L,et al.Role for the MED21-MED7 hinge in assembly of the mediator-RNA polymerase Ⅱ holoenzyme[J].Journal of Biological Chemistry,2016,291(52):26886-26898. [37] VIJAYALINGAM S,CHINNADURAI G.Adenovirus L-E1A activates transcription through mediator complex-dependent recruitment of the super elongation complex[J].Journal of Virology,2013,87(6):3425-3434. [38] TAN C,ZHU S,CHEN Z,et al.Mediator complex proximal tail subunit MED30 is critical for mediator core stability and cardiomyocyte transcriptional network[J].PLoS Genetics,2021,17(9):e1009785. [39] TEBBJI F,CHEN Y,RICHARD ALBERT J,et al.A functional portrait of Med7 and the mediator complex in Candida albicans[J].PLoS Genetics,2014,10(11):e1004770. [40] LI H,LI K,SHU D,et al.MED16 promotes tumour progression and tamoxifen sensitivity by modulating autophagy through the mTOR signalling pathway in ER-positive breast cancer[J].Life (Basel),2022,12(10):1461. [41] WEBER H,RUOFF R,GARABEDIAN M J.MED19 alters AR occupancy and gene expression in prostate cancer cells,driving MAOA expression and growth under low androgen[J].PLoS Genetics,2021,17(1):e1008540. [42] TANG R,XU X,YANG W,et al.MED27 promotes melanoma growth by targeting Akt/MAPK and NF-κB/iNOS signaling pathways[J].Cancer Letters,2016,373(1):77-87. [43] GUO H,LIN S,GAN Z,et al.lncRNA FOXD3-AS1 promotes the progression of non-small cell lung cancer by regulating the miR-135a-5p/CDK6 axis[J].Oncology Letters,2021,22(6):853. [44] YANG W,GAO K,QIAN Y,et al.A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes[J].Journal of Hematology Oncology,2022,15(1):53. [45] WAHDAN-ALASWAD R S,EDGERTON S M,KIM H M,et al.Thyroid hormone enhances estrogen-mediated proliferation and cell cycle regulatory pathways in steroid receptor-positive breast cancer [J].Cell Cycle,2023, 18:1-20. [46] LADEMANN F,TSOURDI E,HOFBAUER L C,et al.Thyroid hormone actions and bone remodeling—The role of the Wnt signaling pathway[J].Experimental and Clinical Endocrinology Diabetes,2020,128(6/7):450-454. [47] LEE M F,PAN M H,CHIOU Y S,et al.Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells[J].Journal of Agricultural and Food Chemistry,2011,59(21):11853-11861. [48] SHAIKHALI J,DAVOINE C,BJORKLUND S,et al.Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence[J].Protoplasma,2016,253(3):957-963. |