[1] 汪以真.mRNA N6-甲基腺嘌呤修饰调控与动物脂肪沉积的研究进展[J].动物营养学报,2022,34(11):6801-16. WANG Y Z.Research progress on mRNA N6-methyladenosine modification regulation and animal fat deposition [J].Chinese Journal of Animal Nutrition,2022,34(11):6801-6816.(in Chinese) [2] 龚凤英,胡雯婧.脂肪组织:一个具有高度异质性和可塑性的内分泌和免疫器官 [J].中华糖尿病杂志,2022,14(12):1469-1474. GONG F Y,HU W J.Adipose tissue:An endocrine and immune organ with high heterogeneity and plasticity [J].Chinese Journal of Diabetes,2022,14(12):1469-1474.(in Chinese) [3] CYPESS A M.Reassessing human adipose tissue [J].The New England Journal of Medicine,2022,386(8):768-779. [4] HUSTED A S,EKBERG J H,TRIPP E,et al.Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT [J].Molecular Metabolism,2020,42:101103. [5] WU J,BOSTRÖM P,SPARKS L M,et al.Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human [J].Cell,2012,150(2):366-376. [6] 蔡根响,景欣悦.米色脂肪,一种新型的产热脂肪[J].中国生物化学与分子生物学报,2017,33(2):116-121. CAI G L,JING X Y.Beige adipocyte,a novel thermogenic adipocyte [J].Chinese Journal of Biochemistry and Molecular Biology,2017,33(2):116-121.(in Chinese) [7] MORIGNY P,BOUCHER J,ARNER P,et al.Lipid and glucose metabolism in white adipocytes:Pathways,dysfunction and therapeutics [J].Nature Reviews.Endocrinology,2021,17(5):276-295. [8] CANNON B,NEDERGAARD J.Brown adipose tissue:Function and physiological significance [J].Physiological Reviews,2004,84(1):277-359. [9] 李欣蔚,刘红霞,何朝勇.转录因子调控脂肪组织生热过程研究进展 [J].药学进展,2020,44(11):837-845. LI X W,LIU H X,HE Z Y.Advances in research on transcription factors regulating adipose tissue thermogenesis [J].Progress in Pharmaceutical Sciences,2020,44(11):837-845.(in Chinese) [10] SAKERS A,DE SIQUEIRA M K,SEALE P,et al.Adipose-tissue plasticity in health and disease [J].Cell,2022,185(3):419-446. [11] DONOHOE C L,LYSAGHT J,O’SULLIVAN J,et al.Emerging concepts linking obesity with the hallmarks of cancer [J].Trends in Endocrinology and Metabolism,2017,28(1):46-62. [12] HARMS M,SEALE P.Brown and beige fat:Development,function and therapeutic potential [J].Nature Medicine,2013,19(10):1252-1263. [13] 徐樱溪,孔瑞琴,孔 娟.脂肪组织棕色化及产热相关机制的研究进展 [J].中国医科大学学报,2022,51(7):648-651. XU Y X,KONG R Q,KONG J.Advances in the mechanisms of adipose tissue browning and thermogenesis [J].Journal of China Medical University,2022,51(7):648-651.(in Chinese) [14] SHI H,WEI J,HE C.Where,when,and how:Context-dependent functions of RNA methylation writers,readers,and erasers [J].Molecular Cell,2019,74(4):640-650. [15] YANG Z,YU G L,ZHU X,et al.Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism:Implications in lipid metabolic disorders [J].Genes and Diseases,2022,9(1):51-61. [16] WU R,WANG X.Epigenetic regulation of adipose tissue expansion and adipogenesis by N(6)-methyladenosine [J].Obesity Reviews,2021,22(2):e13124. [17] MÖSSENBÖCK K,VEGIOPOULOS A,ROSE A J,et al.Browning of white adipose tissue uncouples glucose uptake from insulin signaling [J].Public Library of Science One,2014,9(10):e110428. [18] ZHANG F,HAO G,SHAO M,et al.An adipose tissue atlas:An image-guided identification of human-like BAT and beige depots in rodents [J].Cell Metabolism,2018,27(1):252-262.e3. [19] TABUCHI C,SUL H S.Signaling pathways regulating thermogenesis [J].Front Endocrinol (Lausanne),2021,12:595020. [20] LEE J H,PARK A,OH K J,et al.The role of adipose tissue mitochondria:Regulation of mitochondrial function for the treatment of metabolic diseases [J].International Journal of Molecular Sciences,2019,20(19):4924. [21] PORTER C.Quantification of UCP1 function in human brown adipose tissue [J].Adipocyte,2017,6(2):167-174. [22] CHOUCHANI E T,KAZAK L,SPIEGELMAN B M.New advances in adaptive thermogenesis:UCP1 and beyond [J].Cell Metabolism,2019,29(1):27-37. [23] SKALA J P,KNIGHT B L.Portein kinases in brown adipose tissue of developing rats.State of activation of protein kinase during development and cold exposure and its relationship to adenosine 3':5'-monophosphate,lipolysis,and heat production [J].The Journal of Biological Chemistry,1977,252(3):1064-1070. [24] CAMPDERRÓS L,MOURE R,CAIRÓ M,et al.Brown adipocytes secrete GDF15 in response to thermogenic activation [J].Obesity (Silver Spring),2019,27(10):1606-1016. [25] CAO W,DANIEL K W,ROBIDOUX J,et al.P38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene [J].Molecular Cell Biology,2004,24(7):3057-3067. [26] BOCCALETTO P,STEFANIAK F,RAY A,et al.MODOMICS:A database of RNA modification pathways.2021 update [J].Nucleic Acids Research,2022,50(D1):D231-D235. [27] ROUNDTREE I A,EVANS M E,PAN T,et al.Dynamic RNA modifications in gene expression regulation [J].Cell,2017,169(7):1187-1200. [28] WANG X,ZHAO B S,ROUNDTREE I A,et al.N(6)-methyladenosine modulates messenger RNA translation efficiency [J].Cell,2015,161(6):1388-1399. [29] LI J,XIE H,YING Y,et al.YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer [J].Molecular Cancer,2020,19(1):152. [30] WILLYARD C.An epigenetics gold rush:New controls for gene expression [J]. Nature,2017,542(7642):406-408. [31] ZHANG Y,CHEN W,ZHENG X,et al.Regulatory role and mechanism of m(6)A RNA modification in human metabolic diseases [J].Molecular Therapy Oncolytics,2021,22:52-63. [32] SCHAPIRA M.Structural chemistry of human RNA methyltransferases [J].ACS Chemical Biology,2016,11(3):575-582. [33] LIU J,YUE Y,HAN D,et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation [J].Nature Chemical Biology,2014,10(2):93-95. [34] JIANG X,LIU B,NIE Z,et al.The role of m6A modification in the biological functions and diseases [J].Signal Transduction and Targeted Therapy,2021,6(1):74. [35] WANG P,DOXTADER K A,NAM Y.Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases [J].Molecular Cell,2016,63(2):306-317. [36] 周仁鹏.Mettl14和Mettl3对表皮干细胞的影响及机制研究 [D].上海:上海交通大学,2019. ZHOU R P.Effect and mechanism of Mettl14 and Mettl3 on epidermal stem cells.[D].Shanghai:Shanghai Jiao Tong University,2019.(in Chinese) [37] PING X L,SUN B F,WANG L,et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase [J].Cell Research,2014,24(2):177-189. [38] HUANG Q,MO J,LIAO Z,et al.The RNA m(6)A writer WTAP in diseases:Structure,roles,and mechanisms [J].Cell Death and Disease,2022,13(10):852. [39] WEN J,LV R,MA H,et al.Zc3 h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal [J].Molecular Cell,2018,69(6):1028-1038.e6. [40] AN Y,DUAN H.The role of m6A RNA methylation in cancer metabolism [J].Molecular Cancer,2022,21(1):14. [41] PATIL D P,CHEN C K,PICKERING B F,et al.m(6)A RNA methylation promotes XIST-mediated transcriptional repression [J]. Nature,2016,537(7620):369-373. [42] YUE Y,LIU J,CUI X,et al.VIRMA mediates preferential m(6)A mRNA methylation in 3'-UTR and near stop codon and associates with alternative polyadenylation [J].Cell Discovery,2018,4:10. [43] WARDA A S,KRETSCHMER J,HACKERT P,et al.Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs [J].EMBO Reports,2017,18(11):2004-2014. [44] PENDLETON K E,CHEN B,LIU K,et al.The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention [J].Cell,2017,169(5):824-835.e14. [45] SU R,DONG L,LI Y,et al.METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis [J].Nature Cell Biology,2022,24(2):205-216. [46] PINTO R,VÅGBØ C B,JAKOBSSON M E,et al.The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA [J].Nucleic Acids Research,2020,48(2):830-846. [47] UEDA Y,OOSHIO I,FUSAMAE Y,et al.AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells [J].Scientific Reports,2017,7:42271. [48] 郑莉芳,史仍飞,饶志坚.m6A甲基化修饰对脂肪组织代谢调控作用的研究进展 [J].中国糖尿病杂志,2023,31(12):945-949. ZHENG L F,SHI R F,RAO Z J.Research progress on the regulation of m6A methylation modification on adipose tissue metabolism [J].Chinese Journal of Diabetes,2023,31(12):945-949.(in Chinese) [49] LAN N,LU Y,ZHANG Y,et al.FTO—A common genetic basis for obesity and cancer [J].Frontiers in Genetics,2020,11:559138. [50] JIA G,FU Y,ZHAO X,et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO [J].Nature Chemical Biology,2011,7(12):885-887. [51] LI Y,WANG J,HUANG C,et al.RNA N6-methyladenosine:A promising molecular target in metabolic diseases [J].Cell and Bioscience,2020,10:19. [52] ZHENG G,DAHL J A,NIU Y,et al.ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility [J].Molecular Cell,2013,49(1):18-29. [53] DENG L J,DENG W Q,FAN S R,et al.m6A modification:Recent advances,anticancer targeted drug discovery and beyond [J].Molecular Cancer,2022,21(1):52. [54] BAI X,HUANG J,JIN Y,et al.m6A RNA methylation in biliary tract cancer:The function roles and potential therapeutic implications [J].Cell Death Discovery,2024,10(1):83. [55] DU H,ZHAO Y,HE J,et al.YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex [J].Nature Communications,2016,7:12626. [56] LI A,CHEN Y S,PING X L,et al.Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation [J].Cell Research,2017,27(3):444-447. [57] CHEN Y G,CHEN R,AHMAD S,et al.N6-methyladenosine modification controls circular RNA immunity [J].Molecular Cell,2019,76(1):96-109.e9. [58] HUANG H,WENG H,SUN W,et al.Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J].Nature Cell Biology,2018,20(3):285-295. [59] ALARCÓN C R,GOODARZI H,LEE H,et al.HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events [J].Cell,2015,162(6):1299-1308. [60] XIAO Z,WANG S,TIAN Y,et al.METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells [J].Cell Reports,2023,42(7):112684. [61] CAO X,GENG Q,FAN D,et al.m(6)A methylation:A process reshaping the tumour immune microenvironment and regulating immune evasion [J].Molecular Cancer,2023,22(1):42. [62] HARMS M J,ISHIBASHI J,WANG W,et al.Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice [J].Cell Metabolism,2014,19(4):593-604. [63] LEFTEROVA M I,LAZAR M A.New developments in adipogenesis [J].Trends in Endocrinology and Metabolism,2009,20(3):107-114. [64] PUIGSERVER P,WU Z,PARK C W,et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis [J].Cell,1998,92(6):829-839. [65] INAGAKI T,SAKAI J,KAJIMURA S.Transcriptional and epigenetic control of brown and beige adipose cell fate and function [J].Nature Reviews Molecular Cell Biology,2016,17(8):480-495. [66] WANG Y,GAO M,ZHU F,et al.METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice [J].Nature Communications,2020,11(1):1648. [67] WANG Y,LI X,LIU C,et al.WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice [J].Life Metabolism,2022,1(3):270-284. [68] TAO X,DU R,GUO S,et al.PGE(2)-EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase [J].The EMBO Journal,2022,41(16):e110439. [69] VEGIOPOULOS A,MÜLLER-DECKER K,STRZODA D,et al.Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes [J].Science,2010,328(5982):1158-1161. [70] DINA C,MEYRE D,GALLINA S,et al.Variation in FTO contributes to childhood obesity and severe adult obesity [J].Nature Genetics,2007,39(6):724-726. [71] ZHANG Z,CHEN N,YIN N,et al.The rs1421085 variant within FTO promotes brown fat thermogenesis [J].Nature Metabolism,2023,5(8):1337-1351. [72] CHURCH C,LEE S,BAGG E A,et al.A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene [J].Public Library of Science Genetics,2009,5(8):e1000599. [73] FISCHER J,KOCH L,EMMERLING C,et al.Inactivation of the FTO gene protects from obesity [J]. Nature,2009,458(7240):894-898. [74] WU R,CHEN Y,LIU Y,et al.m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation [J].EMBO Reports,2021,22(11):e52348. [75] YAN S,ZHOU X,WU C,et al.Adipocyte YTH N(6)-methyladenosine RNA-binding protein 1 protects against obesity by promoting white adipose tissue beiging in male mice [J].Nature Communications,2023,14(1):1379. |