[1] COLE M B,AUGUSTIN M A,ROBERTSON M J,et al.The science of food security[J]. NPJ Science of Food,2018,2:14. [2] ZHANG X,RAO C,XIAO X,et al.Prediction of demand for staple food and feed grain by a novel hybrid fractional discrete multivariate grey model[J]. Applied Mathematical Modelling,2023,125:85-107. [3] ZHAO Y,WANG L,KNIGHTON J,et al.Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem[J].Agricultural and Forest Meteorology,2021,300:108323. [4] YU Z,CHEN X,ZHANG J,et al.Rapid and non-destructive estimation of moisture content in Caragana korshinskii pellet feed using hyperspectral imaging[J].Sensors,2023,23(17):7592. [5] PENG W,WANG L,QIU X,et al.Flavonoids from Caragana pruinosa roots[J]. Fitoterapia,2016,114:105-109. [6] ALI L,KHAN S,NAZIR M,et al.Chemical profiling, in vitro biological activities and Pearson correlation between phenolic contents and antioxidant activities of Caragana brachyantha Rech.f[J].South African Journal of Botany,2021,140:189-193. [7] ZONG S,WANG R,CAO C,et al.Impact of chlorophorus Caragana damage on nutrient contents of Caragana korshinskii[J].Journal of Plant Interactions,2013,86:563. [8] BAI B,QIU R,SUN L,et al.Effect isolated lactic acid bacteria inoculation on the quality,bacterial composition and metabolic characterization of Caragana korshinskii silage[J].Chemical and Biological Technologies in Agriculture,2024,11:67. [9] HAN Y,CHANG X,XIANG H,et al.Exploring biomimetic potential of ruminant digestion strategies for lignocellulosic biomass utilization:A comprehensive review[J].Renewable and Sustainable Energy Reviews,2023,188:113887. [10] DU Z,SUN L,LIN Y,et al.Using PacBio SMRT sequencing technology and metabolomics to explore the microbiota-metabolome interaction related to silage fermentation of woody plant[J].Frontiers in Microbiology,2022,13:857431. [11] LAUREN M S A,ABBIGAIL R H,WILLIAM P T,et al.Effect of silo type on fermentation characteristics of laboratory-scale silage[J].Journal of Animal Science,2024,102:48-49. [12] CHALUPA W.Rumen bypass and protection of proteins and amino acids[J].Journal of Dairy Science,1975,58(8):1198-1218. [13] GETACHEW G,BLÜMMEL M,MAKKAR H P S,et al.In vitro gas measuring techniques for assessment of nutritional quality of feeds:A review[J].Animal Feed Science and Technology,1998,72(3):261-281. [14] MENKE K H,STEINGASS H.Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid[J].Animal Research Develop,1988,28:18. [15] ALVES V D,FONTES C M G A,BULE P.Cellulosomes:Highly efficient cellulolytic complexes[J].Subcellular Biochemistry,2021,96:323-354. [16] BORREANI G,TABACCO E,SCHMIDT R J,et al.Silage review:Factors affecting dry matter and quality losses in silages[J].Journal of Dairy Science,2018,101(05):3952-3979. [17] DONG L,ZHANG H,GAO Y,et al.Dynamic profiles of fermentation characteristics and bacterial community composition of Broussonetia papyrifera ensiled with perennial ryegrass[J].Bioresource Technology,2020,310:123396. [18] TISOCCO S,WEINRICH S,LYONS G,et al.Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage:Assessment of input variability[J].Frontiers of Environmental Science & Engineering,2024,18:50. [19] LIU Q,ZONG C,DONG Z,et al.Effects of cellulolytic lactic acid bacteria on the lignocellulose degradation,sugar profile and lactic acid fermentation of high-moisture alfalfa ensiled in low-temperature seasons[J].Cellulose,2020,27(14):7955-7965. [20] LI J,YUAN X,DONG Z,et al.The effects of fibrolytic enzymes,cellulolytic fungi and bacteria on the fermentation characteristics,structural carbohydrates degradation,and enzymatic conversion yields of Pennisetum sinese silage[J].Bioresource Technology,2018,264:123-130. [21] LUO C,WANG D,LU N,et al.Analysis of chemical composition,amino acid content,and rumen degradation characteristics of six organic feeds[J].Animals,2022,12(6):682. [22] STIRLING S,DÍAZ J E,REPETTO J L,et al.Growth stage and ensiling:Impact on chemical composition,conservation quality and in situ ruminal degradability of whole-crop oat[J].Journal of the Science of Food and Agriculture,2021,102(7):2783-8791. [23] LOCKARD C L,LOCKARD C G,SMITH W N,et al.Effects of roughage type on particle separation,rumination,fiber mat characteristics,in situ degradation,and ruminal fermentation parameters in beef steers[J].Journal of Animal Science,2021,99(11):214. [24] PU X,ZHANG X,YI S,et al.Mixed ensiling plus nitrate destroy fiber structure of rape straw,increase degradation,and reduce methanogenesis through in vitro ruminal fermentation[J].Journal of the Science of Food and Agriculture,2023,104(6):3428-3436. [25] YANG J,GUEVARA-OQUENDO V H,CHRISTENSEN D,et al.Utilization of exogenous fibrolytic enzymes in fiber fermentation,degradation,and digestions and characteristics of whole legume faba bean and its plant silage[J].Critical Reviews in Food Science and Nutrition,2022,63(23):6114-6125. [26] WINDERS T M,NEVILLE B W,SWANSON K C.Effects of hempseed cake on ruminal fermentation parameters,nutrient digestibility,nutrient flow,and nitrogen balance in finishing steers[J].Journal of Animal Science,2023,101(3):291. [27] SUN X,WANG Y,XIE T,et al.Effects of high-forage diets containing raw flaxseeds or soybean on in vitro ruminal fermentation,gas emission,and microbial profile[J].Microorganisms,2021,9(11):2304. [28] LIANG J,FANG W,CHANG J,et al.Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production[J].Bioresource Technology,2022,358:127-447. [29] DEWHURST R J,NEWBOLD J R.Effect of ammonia concentration on rumen microbial protein production in vitro[J].British Journal of Nutrition,2021,127(6):847-849. [30] ÍTAVO L C V,GURGEL A L C,FERREIRA ÍTAVO C C B,et al.In vitro digestibility and models of cumulative gas production of forage-free diet[J].Animals,2023,13(22):3515. [31] AKINBODE R M,OSINUGA A A,OLADELE S M,et al.Influence of cassia fistula leaf powder on in vitro ruminal fermentation,gas production and degradability of diets for ruminants[J].The Journal of Agricultural Science,2023,161(1):128-134. [32] ESEN S.Optimizing ruminant nutrition:Insights from a comprehensive analysis of silage composition and in vitro gas production dynamics using nonlinear models[J].Biosystems,2023,234:105062. [33] OSORIO-DOBLADO A M,FELDMANN K P,LOURENCO J M,et al. Forage biodegradation:Advances in ruminal microbial ecology[J].Journal of Animal Science,2023,3:101. [34] ZHANG M,LIANG G,ZHANG X,et al.The gas production,ruminal fermentation parameters,and microbiota in response to Clostridium butyricum supplementation on in vitro varying with media pH levels[J].Frontiers in Microbiology,2022,21(13):960623. [35] KAND D,DICKHOEFER U.The effects of rumen nitrogen balance on nutrient intake,nitrogen partitioning,and microbial protein synthesis in lactating dairy cows offered different dietary protein sources[J].Journal of Dairy Science,2021,104(4):4223-4235. [36] JIAO P,WANG Z,WANG X,et al.Effect of Clostridium butyricum supplementation on in vitro rumen fermentation and microbiota with high grain substrate varying with media pH levels[J].Frontiers in Microbiology,2022,13(9):912040. [37] KUDVA I T,TRACHSEL J,BIERNBAUM E N,et al.Novel reusable animal model for comparative evaluation of in vivo growth and protein-expression of Escherichia coli O157 strains in the bovine rumen[J].PLoS One,2022,17(5):e0268645. [38] YOU M,ZHAO Q,LIU Y,et al.Insights into lignocellulose degradation:Comparative genomics of anaerobic and cellulolytic ruminiclostridium-type species[J].Frontiers in Microbiology,2023,23(14):1288286. [39] PARCHAMI M,UWINEZA C,IBEABUCHI O H,et al.Membrane bioreactor assisted volatile fatty acids production from agro-industrial residues for ruminant feed application[J].Waste Management,2023,170:62-74. [40] REGUEIRA A,BEVILACQUA R,LEMA J M,et al.A metabolic model for targeted volatile fatty acids production by cofermentation of carbohydrates and proteins[J].Bioresource Technology,2019,298:122535. [41] YOHE T T,SCHRAMM H,WHITE R R,et al.Form of calf diet and the rumen:Impact on volatile fatty acid absorption[J].Journal of Dairy Science,2019,102(9):8502-8512. [42] 罗治杰,马 露,卜登攀,等.瘤胃发酵产物乙酸和丙酸比对奶牛生产性能及乳成分影响的荟萃分析[J].中国畜牧兽医,2021,48(5):1613-1624. LUO Z J,MA L,BU D P,et al.How the ruminal acetic acid to propionic acid ratio affect the production and milk composition of dairy cow[J].China Animal Husbandry & Veterinary Medicine,2021,48(5):1613-1624.(in Chinese) [43] HANIGAN M D,SOUZA V C,MARTINEAU R,et al.Predicting ruminally undegraded and microbial protein flows from the rumen[J].Journal of Dairy Science,2021,104(8):8685-8707. [44] STEFA AN'G SKI T,AHVENJÄRVI S,VANHATALO A,et al.Ruminal metabolism of ammonia N and rapeseed meal soluble N fraction[J].Journal of Dairy Science,2020,103(8):7081-7093. [45] ZHU J,LI F,WANG Z,et al.Effect of anaerobic calcium oxide alkalization on the carbohydrate molecular structures,chemical profiles,and ruminal degradability of rape straw[J].Animals,2023,13(15):2421. |