[1] NARINC D,UCKARDES F,ASLAN E.Egg production curve analyses in poultry science[J].World’s Poultry Science Journal,2014,70(4):817-828. [2] NELDER J.The fitting of a generalization of the logistic curve[J].Biometrics,1961,17(1):89-110. [3] WOOD P.Algebraic model of the lactation curve in cattle[J].Nature,1967,216(5111):164-165. [4] MCMILLAN I,FITZ-EARLE M,ROBSON D.Quantitative genetics of fertility Ⅰ.Lifetime egg production of Drosophila melanogaster—Theoretical[J].Genetics,1970,65(2):349-353. [5] MCMILLAN I.Compartmental model analysis of poultry egg production curves[J].Poultry Science,1981,60(7):1549-1551. [6] MCNALLY D.Mathematical model for poultry egg production[J].Biometrics,1971,27(3):735-738. [7] YANG N,WU C,MCMILLAN I.New mathematical model of poultry egg production[J].Poultry Science,1989,68(4):476-481. [8] FIALHO F B,LEDUR M C.Segmented polynomial model for estimation of egg production curves in laying hens[J].British Poultry Science,1997,38(1):66-73. [9] GROSSMAN M,GOSSMAN T N,KOOPS W J,et al.A model for persistency of egg production[J].Poultry Science,2000,79(12):1715-1724. [10] 埃塞姆·阿培丁.机器学习导论[M].范明译.北京:机械工业出版社,2015. ALPAYDIN E.Introduction to Machine Learning[M].Translated by Fan Ming.Beijing:Mechanical Industry Press,2015.(in Chinese) [11] SAVEGNAGO R,NUNES B,CAETANO S,et al.Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens[J].Poultry Science,2011,90(3):705-711. [12] SAFARI-ALIQIARLOO A,FAGHIH-MOHAMMADI F,ZARE M,et al.Artificial neural network and non-linear logistic regression models to fit the egg production curve in commercial-type broiler breeders[J].European Poultry Science,2017,81:212. [13] 袁哲明,张永生,熊洁仪.基于SVR的多维时间序列分析及其在农业科学中的应用[J].中国农业科学,2008,41(8):2485-2492. YUAN Z M,ZHANG Y S,XIONG J Y.Multidimensional time series analysis based on support vector machine regression and its application in agriculture[J].Scientia Agricultura Sinica,2008,41(8):2485-2492.(in Chinese) [14] CHEN J T,HE P G,JIANG J S,et al.In vivo prediction of abdominal fat and breast muscle in broiler chicken using live body measurements based on machine learning[J].Poultry Science,2023,102(1):102239. [15] HEPWORTH P J,NEFEDOV A V,MUCHNIK I B,et al.Broiler chickens can benefit from machine learning:Support vector machine analysis of observational epidemiological data[J].Journal of the Royal Society Interface,2012,9(73):1934-1942. [16] GITOEE A,FARIDI A,FRANCE J.Mathematical models for response to amino acids:Estimating the response of broiler chickens to branched-chain amino acids using support vector regression and neural network models[J].Neural Computing & Applications,2018,30(8):2499-2508. [17] SEHIRLI E,ARSLAN K.An application for the classification of egg quality and haugh unit based on characteristic egg features using machine learning models[J].Expert Systems with Applications,2022,205:117692. [18] AKILLI A,GORGULU O.Comparative assessments of multivariate nonlinear fuzzy regression techniques for egg production curve[J].Tropical Animal Health and Production,2020,52(4):2119-2127. [19] GORGULU O,AKILLI A.Egg production curve fitting using least square support vector machines and nonlinear regression analysis[J].European Poultry Science,2018,82:235. [20] 吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学,2007. WU C Y.The research and application on neural network[D].Harbin:Northeast Agricultural University,2007.(in Chinese) [21] KIM K J.Financial time series forecasting using support vector machines[J].Neurocomputing,2003,55(1-2):307-319. [22] ANANG A,MIELENZ N,SCHÜLER L.Monthly model for genetic evaluation of laying hens 1.Fixed regression[J].British Poultry Science,2001,42(2):191-196. [23] CRUZ V A R,PIRES A V,TORRES FILHO R A,et al.Evaluation of posture rating curves of a female line of broilers[J].Ciência Rural,2013,43(3):520-524. [24] ONI O,ABUBAKAR B,DIM N,et al.Genetic and phenotypic relationships between McNally model parameters and egg production traits[J].International Journal of Poultry Science,2007,6(1):8-12. [25] FISCHER S.The role of macroeconomic factors in growth[J].Journal of Monetary Economics,1993,32(3):485-512. [26] GOSHU A T,KOYA P R.Derivation of inflection points of nonlinear regression curves-implications to statistics[J].American Journal of Theoretical and Applied Statistics,2013,2(6):268-272. [27] PINZÓN L,BETANCOURT L,AFANADOR T.Use of mathematical models in the analysis of growth and commercial performance of Brown layers[J].Brazilian Journal of Poultry Science,2022,24(1):1-10. [28] SAVEGNAGO R,CRUZ V,RAMOS S,et al.Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens[J].Poultry Science,2012,91(11):2977-2987. [29] OERTEL E,SIMIANER H.Welcome to the machine:Terms,topics and trends[J].Journal of Animal Breeding and Genetics,2020,137(6):521-522. [30] 李棉燕,王立贤,赵福平.机器学习在动物基因组选择中的研究进展[J].中国农业科学,2023,56(18):3682-3692. LI M Y,WANG L X,ZHAO F P.Research progress on machine learning for genomic selection in animals[J].Scientia Agricultura Sinica,2023,56(18):3682-3692.(in Chinese) [31] KAEWTAPEE C,KHETCHATURAT C,BUNCHASAK C.Comparison of growth models between artificial neural networks and nonlinear regression analysis in Cherry Valley ducks[J].Journalof Applied Poultry Research,2011,20(4):421-428. [32] AHMAD H.Poultry growth modeling using neural networks and simulated data[J].Journal of Applied Poultry Research,2009,18(3):440-446. [33] LEE W,HAM Y,BAN T W,et al.Analysis of growth performance in swine based on machine learning[J].Ieee Access,2019,7:161716-161724. [34] IQBAL F,RAZIQ A,HUMA Z E,et al.An application of least square support vector machine model with parameters optimization for predicting body weight of Harnai sheep breed[J].Turkish Journal of Veterinary & Animal Sciences,2021,45(4):716-725. [35] ALONSO J,VILLA A,BAHAMONDE A.Improved estimation of bovine weight trajectories using support vector machine classification[J]. Computers and Electronics in Agriculture,2015,110:36-41. [36] ROUSH W,DOZIER W,BRANTON S.Comparison of Gompertz and neural network models of broiler growth[J].Poultry Science,2006,85(4):794-797. [37] CYBENKO G.Approximation by superpositions of a sigmoidal function[J].Mathematics of Control,Signals and Systems,1989,2(4):303-314. |