China Animal Husbandry and Veterinary Medicine ›› 2024, Vol. 51 ›› Issue (4): 1757-1772.doi: 10.16431/j.cnki.1671-7236.2024.04.043
• Basic Veterinary Medicine • Previous Articles
ZHI Yupeng1, LIU Yutong1, CHEN Dishi2, GONG Mengfei1, XIA Xuemei1, REN Yupeng1
Received:
2023-09-11
Published:
2024-03-27
CLC Number:
ZHI Yupeng, LIU Yutong, CHEN Dishi, GONG Mengfei, XIA Xuemei, REN Yupeng. Study on the anti-PEDV Mechanism and Experimental Verification of Chrysin and Naringenin Based on Network Pharmacology and Molecular Docking[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(4): 1757-1772.
[1] 郭思杰,刘俊琦,李玉娟,等.猪流行性腹泻及新型疫苗研究进展[J].中国畜牧兽医,2020,47(9):2935-2944. GUO S J,LIU J Q,LI Y J,et al.Research advances on porcine epidemic diarrhea and new vaccine[J].China Animal Husbandry & Veterinary Medicine,2020,47(9):2935-2944.(in Chinese) [2] ZHANG Y,CHEN Y,ZHOU J,et al.Porcine epidemic diarrhea virus:An updated overview of virus epidemiology,virulence variation patterns and virus-host interactions[J].Viruses,2022,14(11):24-34. [3] LIU J,SHI H,CHEN J,et al.A new neutralization epitope in the spike protein of Porcine epidemic diarrhea virus[J]. International Journal of Molecular Sciences,2022,23(17):9674. [4] 史秋颖,段宝敏,李颖,等.2020-2021年中国部分地区猪流行性腹泻病毒S1基因遗传变异分析[J].中国畜牧兽医,2023,50(6):2468-2478. SHI Q Y,DUAN B M,LI Y,et al.Analysis of genetic variation of S1 gene of Porcine epidemic diarrhea virus in some areas of China from 2020 to 2021[J].China Animal Husbandry & Veterinary Medicine,2023,50(6):2468-2478.(in Chinese) [5] 曹洪志,李成贤,宫萌菲,等.抗猪流行性腹泻病毒天然化合物研究进展[J].黑龙江畜牧兽医,2023,14:22-27. CAO H Z,LI C X,GONG M F,et al.Progress in natural compounds against Porcine epidemic diarrhea virus[J].Heilongjiang Animal Science and Veterinary Medicine,2023,14:22-27.(in Chinese) [6] RUSSO M,MOCCIA S,SPAGNUOLO C,et al.Roles of flavonoids against Coronavirus infection[J].Chemico-Biological Interactions,2020,328:109211. [7] LIU W,FENG Y,YU S,et al.The flavonoid biosynthesis network in plants[J].International Journal of Molecular Sciences,2021,22(23):12824. [8] WANG L,SONG J,LIU A,et al.Research progress of the antiviral bioactivities of natural flavonoids[J].Natural Products and Bioprospecting,2020,5:271-283. [9] SUN Y,LI C,LI Z,et al.Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo[J].Virus Research,2021,305:198556. [10] THEERAWATANASIRIKUL S,THANGTHAMNIYOM N,KUO C J,et al.Natural phytochemicals,luteolin and isoginkgetin,inhibit 3C protease and infection of FMDV,in silico and in vitro[J]. Viruses,2021,13(11):2118-2121. [11] TIAN Y,SANG H,LIU M,et al.Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation[J].Microbes and Infection,2020,22(6):254-262. [12] 余漂,王祥培,靳凤云,等.基于网络药理学吉贝咳喘胶囊干预新型冠状病毒肺炎(COVID-19)作用机制分析[J].药物化学,2021,9(4):144-153. YU P,WANG X P,JIN F Y,et al.Study on the mechanism of Jibei Kechuan capsules intervention’ action on novel Coronavirus pneumonia (COVID-19) based on network pharmacology[J].Hans Journal of Medicinal Chemistry,2021,9(4):144-153.(in Chinese) [13] DU J,CHEN Z,ZHANG T,et al.Inhibition of Dengue virus replication by diisopropyl chrysin-7-yl phosphate[J].Science China.Life Sciences,2016,59(8):832-838. [14] ALBUQUERQUE DE OLIVEIRA MENDES L,PONCIANO C S,DEPIERI CATANEO A H,et al.The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds[J].Chemico-Biological Interactions,2022,331:109218. [15] ASMA S T,BOBIS O,BONTA V,et al.General nutritional profile of bee products and their potential antiviral properties against mammalian viruses[J].Nutrients, 2022,14(17):3579. [16] LIU Y,SONG X,LI C,et al.Chrysin ameliorates Influenza virus infection in the upper airways by repressing virus-induced cell cycle arrest and mitochondria-dependent apoptosis[J].Frontiers in Immunology,2022,13:872958. [17] SONG J H,KWON B E,JANG H,et al.Antiviral activity of chrysin derivatives against Coxsackievirus b3in vitro and in vivo[J]. Biomolecules and Therapeutics,2015,23(5):465-470. [18] 宫萌菲.白杨素和柚皮素的抗PEDV作用研究[D].成都:西南民族大学,2023. GONG M F.Study on the anti-PEDV effect of chrysin and naringenin[D].Chengdu:Southwest Minzu University,2023.(in Chinese) [19] 王一丹,杨发龙,陈弟诗,等.猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J].中国农业科学,2023,56(1):179-192. WANG Y D,YANG F L,CHEN D S,et al.One-step multiple TaqMan Real-time RT-PCR for simultaneous detection of swine diarrhea viruses[J].Scientia Agricultura Sinica,2023,56(1):179-192.(in Chinese) [20] 秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报,2011,51(4):445-457. QIN N,LI D F,YANG R F.Next-generation sequencing technologies and the application in microbiology[J]. Acta Microbiologica Sinica,2011,51(4):445-457.(in Chinese) [21] WANG J,ZHANG T,DU J,et al.Anti-enterovirus 71 effects of chrysin and its phosphate ester[J].PLoS One,2014,9(3):e89668. [22] 许丞惠,张旭梅,杨彤,等.基于网络药理学及分子对接探究益母草碱治疗肠道炎症的分子机制[J].中国畜牧兽医,2023,50(5):2103-2113. XU C H,ZHANG X M,YANG T,et al.Molecular mechanism of leonurine in the treatment of intestinal inflammation based on network pharmacology and molecular docking[J].China Animal Husbandry & Veterinary Medicine,2023,50(5):2103-2113.(in Chinese) [23] POOPANDI S,SUNDARAJ R,RAJMICHAEL R,et al.Computational screening of potential inhibitors targeting MurF of Brugia malayi Wolbachia through multi-scale molecular docking,molecular dynamics and MM-GBSA analysis[J].Molecular and Biochemical Parasitology,2021,246:111427-111433. [24] SHAH S,CHAPLE D,ARORA S,et al.Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method[J].Network Modeling Analysis in Health Informatics and Bioinformatics,2021,10(1):8. [25] LI R,LI Y,LIANG X,et al.Network pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets[J].Briefings in Bioinformatics,2021,22(2):1279-1290. [26] 刘贺娟,史晨曦,王静,等.基于网络药理学探讨黄芩素对猪丁型冠状病毒感染的潜在作用机制[J].畜牧兽医学报,2022,53(11):4097-4109. LIU H J,SHI C X,WANG J,et al.Exploration on the potential mechanism of baicalein on Porcine deltacoronavirus infection based on network pharmacology[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):4097-4109.(in Chinese) [27] NAHMIAS Y,GOLDWASSER J,CASALI M,et al.Apolipoprotein B-dependent Hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin[J].Hepatology,2008,47(5):1437-1445. [28] CHEN Z,LAURENCE A,KANNO Y,et al.Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(21):8137-8142. [29] HARRINGTON L E,HATTON R D,MANGAN P R,et al.Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J].Nature Immunology,2005,6(11):1123-1132. [30] KOONPAEW S,TEERAVECH S,FRANTZ P N,et al.PEDV and PDCoV pathogenesis:The interplay between host innate immune responses and Porcine enteric coronaviruses[J].Frontiers in Veterinary Science,2019,6:34. [31] MANKOURI J,TEDBURY PR,GRETTON S,et al.Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(25):11549-11554. [32] WANG J,KAN X,LI X,et al.Porcine epidemic diarrhoea virus (PEDV) infection activates AMPK and JNK through TAK1 to induce autophagy and enhance virus replication[J].Virulence,2022,13(1):1697-1712. [33] CRYNS V,YUAN J.Proteases to die for[J].Genes and Development,1998,12(11):1551-1570. [34] 赵倩,陈晓娟,邢雅玲,等.猪流行性腹泻病毒通过病毒蛋白酶激活Caspase-3诱导细胞凋亡[J].中国生物化学与分子生物学报,2015,31(11):1171-1178. ZHAO Q,CHEN X J,XING Y L,et al.PEDV Coronavirus induces apoptosis through activation of Caspase-3 by papain-like protease[J].Chinese Journal of Biochemistry and Molecular Biology,2015,31(11):1171-1178.(in Chinese) [35] CHEN Y,ZHANG Z,LI J,et al.Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virology Journal,2018,15(1):170-175. [36] INGMAN W V,ROBKER R L,WOITTIEZ K,et al.Null mutation in transforming growth factor β1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest[J].Endocrinology,2006,147(2):835-845. [37] FRANTZ C,STEWART K M,WEAVER V M.The extracellular matrix at a glance[J].Journal of Cell Science,2010,123(Pt 24):4195-4200. [38] FINDLAY J K,DRUMMOND A E,DYSON M L,et al.Recruitment and development of the follicle;The roles of the transforming growth factor-beta superfamily[J].Molecular and Cellular Endocrinology,2002,191(1):35-43. [39] BOMMIREDDY R,DOETSCHMAN T.TGFbeta1 and Treg cells:Alliance for tolerance[J].Trends in Molecular Medicine,2007,13(11):492-501. [40] YANG S,WANG C,HUANG X,et al.Linoleic acid stimulation results in TGF-β1 production and inhibition of PEDV infection in vitro[J].Virology,2023,581:89-96. |
[1] | JIANG Bingyu, CHEN Ning, CUI Yanan, ZHU Kaiqing, JIANG Pengxin, WANG Xutao, LI Yan. Investigation of the Mechanism of Sihuang Antidiarrheal Granules in the Treatment of Piglets Diarrhea Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(3): 1308-1319. |
[2] | GUO Ziyan, SONG Yanping, NIAN Xia, SU Min. Mechanism of Modified Yujin San in Treatment of Transmissible Gastroenteritis of Swine Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 809-819. |
[3] | XING Qinghua, LI Songwei, GONG Xiaohong, HU Wenying, LU Chaoqun. Study on the Mechanism of Total Glucosides of Paeony in the Treatment of Pulmonary Interstitial Fibrosis in Rheumatoid Arthritis Based on Network Pharmacology [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(2): 850-863. |
[4] | LUO Xiaofeng, LIU Panpan, CHEN Xiaohui, ZHANG Beibei, MA Yanjun, WANG Guiqin. Inhibitory Effect of Lycium barbarum Quercetin on β-lactamase from Staphylococcus aureus [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 382-391. |
[5] | RONG Qiao, LIU Jinde, CHENG Yongting, WANG Yinan, GONG Liufei, LI Lin, SUN Feifei. Exploring the Molecular Mechanism of Mulberry Leaf and Eucommia ulmoides Against Infectious Bursal Disease of Poultry Based on Network Pharmacology [J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(1): 392-406. |
[6] | SHEN Haiyan, WANG Songqi, ZHANG Bin, LIU Zhicheng, ZHANG Jianfeng, LIAO Ming, ZHANG Chunhong. Bioinformatics Analysis of Porcine A3Z2 Gene and Its Antiviral Activity of PEDV Replication [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3695-3706. |
[7] | WANG Chao, GONG Zhiguo, LIU Xinyu, ZHAO Jiamin, YANG Xiaolin, WANG Yu, YU Zhuoya, BAI Yunjie, CAO Jinshan, LIU Bo, ZHANG Shuangyi, MAO Wei, GAO Ruifeng. Exploring of the Mechanism of Traditional Chinese Medicine Compounds in Preventing and Treating Dairy Cows Mastitis Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3842-3852. |
[8] | LIU Weiwei, ZHANG Yuxin, ZHOU Weiwei, DAI Xiaofeng, FU Hongyun, LUO Wenjie, LI Xiumei. Mechanism of Lonicerae Japonicae Flos Alleviating Oxidative Stress in Cattle Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(8): 3391-3402. |
[9] | LU Sijia, ZHENG Lanlan. Research Progress on Porcine Epidemic Diarrhea Virus Vaccines [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(7): 2931-2940. |
[10] | FAN Qiuyu, WU Jianwen, LI Chunxiao, WANG Jinquan, LI Huanrong, WANG Xiumin. Network Pharmacology Analysis of Anti-inflammatory Mechanism of Sophora alopecuroides and Experimental Validation [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(7): 2951-2965. |
[11] | FAN Yimeng, WEI Yuanyuan, WANG Huiru, GA yu, ZHANG Yannan, ZHAO Qingyu, HAO Zhihui. Potential Mechanisms of Chinese Veterinary Medicine Compound Rukang Granules in the Treatment of Dairy Cow Mastitis Based on Network Pharmacology and Molecular Docking Technology [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2507-2517. |
[12] | ZHAO Qianhui, LIU Ying, JIAO Yulan, SHI Wanyu, CHEN Fuxing. Exploring of the Mechanism of Cuscuta chinensis Flavonoids in Alleviating Reproductive Damage in Offspring Rats Exposed to Bisphenol A During Pregnancy Based on Network Pharmacology [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2550-2561. |
[13] | ZHANG Xinyue, SUN Na, SUN Panpan, ZHANG Hua, FAN Kuohai, YIN Wei, SUN Yaogui, LI Hongquan. Mechanism of Scutellarin Against Follicular Atresia Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(6): 2585-2593. |
[14] | XU Chenghui, ZHANG Xumei, YANG Tong, LI Jiahui, SUN Yawei, SHI Huijun, FU Qiang, YANG Li. Molecular Mechanism of Leonurine in the Treatment of Intestinal Inflammation Based on Network Pharmacology and Molecular Docking [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 2103-2113. |
[15] | HU Xiangyun, YI Xianfeng, HUANG Zhichao, WU Siqian, CHEN Zhengyu, LYU Lingyan, Huang Chao, SU Yongchun. Pharmacological Activity and Action Mechanism of Compound Plant Essential Oils Revealed Based on Network Pharmacology [J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(5): 2139-2148. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||