中国畜牧兽医 ›› 2021, Vol. 48 ›› Issue (4): 1343-1350.doi: 10.16431/j.cnki.1671-7236.2021.04.021
朱天奇, 李佳, 刘国世, 张鲁
收稿日期:
2020-08-20
出版日期:
2021-04-20
发布日期:
2021-04-16
通讯作者:
张鲁
E-mail:luzhang2018@cau.edu.cn
作者简介:
朱天奇(1995-),男,湖北宜昌人,博士生,研究方向:动物生殖生理学,E-mail:695241965@qq.com
基金资助:
ZHU Tianqi, LI Jia, LIU Guoshi, ZHANG Lu
Received:
2020-08-20
Online:
2021-04-20
Published:
2021-04-16
摘要: 哺乳动物的精子和卵母细胞由减数分裂产生,其遗传物质减半,功能高度特化。精卵结合后,染色体数恢复,获得发育的全能性,重启有丝分裂,开始个体的生长。受精时,精子引起卵母细胞内的钙离子(Ca2+)以一定的频率波动,称为钙振荡。Ca2+周期性的变化,驱动下游蛋白的活动,完成卵母细胞的激活。作者主要介绍了受精时钙振荡启动的机制,以及其持续时间、振幅、频率对哺乳动物卵母细胞正常受精的影响;同时,讨论了Ca2+在卵母细胞内外运输的通道和钙振荡发生和维持的机制;分析了钙振荡对卵母细胞的细胞周期恢复和母源mRNA翻译的调控作用和机制。目前,关于卵母细胞激活事件信号通路的研究已经取得了很大的进展,但每个单独事件所涉及的分子机制尚未完全确定。本综述探讨了哺乳动物受精时卵母细胞内钙信号研究的现状和未来研究的方向,为保障人类生殖健康和提高畜牧繁殖效率提供参考。
中图分类号:
朱天奇, 李佳, 刘国世, 张鲁. 钙振荡在哺乳动物卵母细胞受精过程中的作用[J]. 中国畜牧兽医, 2021, 48(4): 1343-1350.
ZHU Tianqi, LI Jia, LIU Guoshi, ZHANG Lu. The Roles of Calcium Oscillations in the Fertilization and Activation of Oocytes[J]. China Animal Husbandry and Veterinary Medicine, 2021, 48(4): 1343-1350.
[1] CLIFT D,SCHUH M.Restarting life:Fertilization and the transition from meiosis to mitosis[J].Nature Reviews Molecular Cell Biology,2013,14(9):549-562. [2] SUN Q Y.Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs[J].Microscopy Research and Technique,2003,61(4):342-348. [3] STEINHARDT R A,ALDERTON J.Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo[J].Nature,1988,332(6162):364-366. [4] HARRISON S M,BERS D M.The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA[J].Biochimica et Biophysica Acta,1987,925(2):133-143. [5] ZHANG L.The regulation of calcium oscillations in porcine eggs at fertilization[D].West Lafayette:Proquest Dissertations and Theses Full-Text Search Platform,2017. [6] SWANN K,LAI F A.Egg activation at fertilization by a soluble sperm protein[J].Physiological Reviews,2016,96(1):127-149. [7] KASHIR J,JONES C,COWARD K.Calcium oscillations,oocyte activation,and phospholipase C zeta[J].Advances in Experimental Medicine and Biology,2012,740:1095-1121. [8] NOMIKOS M,SWANN K,LAI F A.Starting a new life:Sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development:An essential phospholipase C with implications for male infertility[J].Bioessays,2012,34(2):126-134. [9] WAKAI T,VANDERHEYDEN V,FISSORE R A.Ca2+ signaling during mammalian fertilization:Requirements,players,and adaptations[J].Cold Spring Harbor Perspectives in Biology,2011,3(4):a006767. [10] MIYAZAKI S,YUZAKI M,NAKADA K,et al.Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs[J].Science,1992,257(5067):251-255. [11] MALCUIT C,KNOTT J G,HE C L,et al.Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs[J] Biology of Reproduction,2005,73(1):2-13. [12] NAKAI M,ITO J,SUYAMA A,et al.Phospholipase Cζ (PLCζ) versus postacrosomal sheath WW domain-binding protein (PAWP):Which molecule will survive as a sperm factor?[J].Animal Science Journal,2020,91:e13345. [13] FERRER-BUITRAGO M,DHAENENS L,LU Y,et al.Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI[J].Human Reproduction,2018,33(3):416-425. [14] YUAN P,YANG C,REN Y X,et al.A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure[J].Human Reproduction,2020,35(4):977-985. [15] KASHIR J,MISTRY B V,BUSALEH L,et al.Phospholipase C zeta profiles are indicative of optimal sperm parameters and fertilisation success in patients undergoing fertility treatment[J].Andrology, 2020,8(5):1143-1159. [16] KASHIR J,JONES C,LEE H C,et al.Loss of activity mutations in phospholipase C zeta (PLCζ) abolishes calcium oscillatory ability of human recombinant protein in mouse oocytes[J].Human Reproduction,2011,26(12):3372-3387. [17] KASHIR J,KONSTANTINIDIS M,JONES C,et al.Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCζ) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells[J].Fertility and Sterility,2012,98(2):423-431. [18] YAN Z,FAN Y,WANG F,et al.Novel mutations in PLCZ1 cause male infertility due to fertilization failure or poor fertilization[J].Human Reproduction,2020,35(2):472-481. [19] TORRA-MASSANA M,CORNET-BARTOLOMÉ D A,BARRAGÁN M,et al.Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI[J].Human Reproduction,2019,34(8):1494-1504. [20] FERRER-BUITRAGO M,BONTE D,DHAENENS L,et al.Assessment of the calcium releasing machinery in oocytes that failed to fertilize after conventional ICSI and assisted oocyte activation[J].Reproductive Biomedicine Online,2019,38(4):497-507. [21] YOON S Y,EUM J H,LEE J E,et al.Recombinant human phospholipase C zeta 1 induces intracellular calcium oscillations and oocyte activation in mouse and human oocytes[J].Human Reproduction,2012,27(6):1768-1780. [22] WANG C M,MACHATY Z.Calcium influx in mammalian eggs[J].Reproduction,2013,145(4):97-105. [23] NAKAI M,ITO J,SUZUKI S I,et al.Lack of calcium oscillation causes failure of oocyte activation after intracytoplasmic sperm injection in pigs[J].Journal of Reproduction and Development,2016,62(6):615-621. [24] CHITHIWALA Z H,LEE H C,HILL D L,et al.Phospholipase C-zeta deficiency as a cause for repetitive oocyte fertilization failure during ovarian stimulation for in vitro fertilization with ICSI:A case report[J].Journal of Assisted Reproduction and Genetics,2015,32(9):1415-1419. [25] SANUSI R,YU Y S,NOMIKOS M,et al.Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Cζ[J].Molecular Human Reproduction,2015,21(10):783-791. [26] 李昂.卵泡体外培养和体外成熟卵母细胞的核质质量分析[D].太原:山西医科大学,2020. LI A.Analyzing nuclear and cytoplasmic quality of oocytes matured in vitro or derived from follicle culture in vitro[D].Taiyuan:Shanxi Medical University,2020.(in Chinese) [27] TERADA Y,HASEGAWA H,TAKAHASHI A,et al.Successful pregnancy after oocyte activation by a calcium ionophore for a patient with recurrent intracytoplasmic sperm injection failure,with an assessment of oocyte activation and sperm centrosomal function using bovine eggs[J].Fertility and Sterility,2009,91(3):935.e11-4. [28] KASHIR J.Increasing associations between defects in phospholipase C zeta and conditions of male infertility:Not just ICSI failure?[J].Journal of Assisted Reproduction and Genetics,2020,37(6):1273-1293. [29] DUCIBELLA T,HUNEAU D,ANGELICHIO E,et al.Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number[J].Developmental Biology,2002,250(2):280-291. [30] OZIL J P,BANREZES B,TóTH S,et al.Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term[J].Developmental Biology,2006,300(2):534-544. [31] OZIL J P,MARKOULAKI S,TÓTH S, et al.Egg activation events are regulated by the duration of a sustained[Ca2+]cyt signal in the mouse[J].Developmental Biology,2005,282(1):39-54. [32] NIXON V L,LEVASSEUR M,MCDOUGALL A,et al.Ca2+ oscillations promote APC/C-dependent cyclin B1 degradation during metaphase arrest and completion of meiosis in fertilizing mouse eggs[J].Current Biology,2002,12(9):746-750. [33] MIAO Y L,WILLIAMS C J.Calcium signaling in mammalian egg activation and embryo development:The influence of subcellular localization[J].Molecular Reproduction and Development,2012,79(11):742-756. [34] OH J S,SUSOR A,CONTI M.Protein tyrosine kinase Wee1B is essential for metaphase Ⅱ exit in mouse oocytes[J].Science,2011,332(6028):462-465. [35] KUBIAK J Z,CIEMERYCH M A,HUPALOWSKA A,et al.On the transition from the meiotic to mitotic cell cycle during early mouse development[J].International Journal of Developmental Biology,2008,52(2-3):201-217. [36] NIKIFORAKI D,MEERSCHAUT F V,ROO C,et al.Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern[J].Fertility and Sterility,2016,105(3):798-806. [37] CHEN C,SUN T Y,YIN M R,et al.Ionomycin induced mouse oocyte activation can disrupt preimplantation embryo development through increased reactive oxygen species reaction and DNA damage[J].Molecular Human Reproduction,2020,26(10):gaaa056. [38] ANIFANDIS G,MICHOPOULOS A,DAPONTE A,et al.Artificial oocyte activation:Physiological,pathophysiological and ethical aspects[J].Systems Biology in Reproductive Medicine,2019,65(1):3-11. [39] SUN B,YEH J.Calcium oscillatory patterns and oocyte activation during fertilization:A possible mechanism for total fertilization failure (TFF) in human in vitro fertilization?[J].Reproductive Sciences,2021,28:639-648. [40] FEITOSA W B,LOPES E,VISINTIN J A,et al.Endoplasmic reticulum distribution during bovine oocyte activation is regulated by protein kinase C via actin filaments[J].Journal of Cellular Physiology,2020,235(7-8):5823-5834. [41] WAKAI T,ZHANG N,VANGHELUWE P,et al.Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs[J].Journal of Cell Science,2013,126(24):5714-5724. [42] WANG Y,MATTSON M P,FURUKAWA K.Endoplasmic reticulum calcium release is modulated by actin polymerization[J].Journal of Neurochemistry,2002,82(4):945-952. [43] 贾振伟,杨鑫宇.内质网与卵母细胞发育[J].中国细胞生物学学报,2019,41(7):1423-1427. JIA Z W,YANG X Y.Endoplasmic reticulum and oocyte development[J].Chinese Journal of Cell Biology,2019,41(7):1423-1427.(in Chinese) [44] 袁瑞莹.不同处理方式对小鼠卵母细胞孤雌激活钙离子振荡的影响[D].广州:南方医科大学,2018. YUAN R Y.Effect of different treatments on the[Ca2+]i oscillations in parthenogenetic activation of mouse oocytes[D].Guangzhou:Southern Medical University,2018.(in Chinese) [45] COTICCHIO G,CANTO M D,RENZINI M M,et al.Oocyte maturation:Gamete-somatic cells interactions,meiotic resumption,cytoskeletal dynamics and cytoplasmic reorganization[J].Human Reproduction Update,2015,21(4):427-454. [46] WAKAI T,FISSORE R A.Ca2+ homeostasis and regulation of ER Ca2+ in mammalian oocytes/eggs[J].Cell Calcium,2013,53(1):63-67. [47] MIAO Y L,STEIN P,JEFFERSON W N,et al.Calcium influx-mediated signaling is required for complete mouse egg activation[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(11):4169-74. [48] WANG F,LI A,MENG T G,et al.Regulation of[Ca2+]i oscillations and mitochondrial activity by various calcium transporters in mouse oocytes[J].Reproductive Biology and Endocrinology,2020,18(1):87. [49] MACHATY Z.Signal transduction in mammalian oocytes during fertilization[J].Cell Tissue Research,2016,363:169-183. [50] ANIFANDIS G,MESSINI C I,DAFOPOULOS K,et al.Sperm contributions to oocyte activation:More that meets the eye[J].Journal of Assisted Reproduc-tion and Genetics,2016,33:313-316. [51] CATTERALL W A.Voltage-gated calcium channels[J].Cold Spring Harbor Perspectives in Biology,2011,3(8):a003947. [52] ARDESTANIA G,MEHREGANA A,FLEIG A,et al.Divalent cation influx and calcium homeostasis in germinal vesicle mouse oocytes[J].Cell Calcium,2020,87:102181. [53] BERNHARDT M L,ZHANG Y,ERXLEBEN C F,et al.Cav3.2 T-type channels mediate Ca2+ entry during oocyte maturation and following fertilization[J].Journal of Cell Science,2015,128(23):4442-4452. [54] LEE H,YOO S,LYKKE-HARTMANN K,et al.TRPV3 channels mediate Ca2+ influx induced by 2-APB in mouse eggs[J].Cell Calcium,2016,59(1):21-31. [55] CARVACHO I,LEE H,FISSORE R,et al.TRPV3 channels mediate strontium-induced mouse-egg activation[J].Cell Reports,2013,5(5):1375-1386. [56] BERNHARDT L,STEIN P,CARVACHO I,et al.TRPM7 and Cav3.2 channels mediate Ca2+ influx required for egg activation at fertilization[J].Proceedings of the National Academy of Sciences,2018,115(44):E10370-E10378. [57] GÓMEZ-FERNÁNDEZ C,POZO-GUISADO E,GANAN-PARRA M,et al.Relocalization of STIM1 in mouse oocytes at fertilization:Early involvement of store-operated calcium entry[J].Reproduction,2009,138(2):211-221. [58] LEE K,WANG C,MACHATY Z.STIM1 is required for Ca2+ signaling during mammalian fertilization[J].Developmental Biology,2012,367(2):154-162. [59] HU Q,WOLFNER M F.Regulation of Trpm activation and calcium wave initiation during Drosophila egg activation[J].Molecular Reproduction and Development,2020,87(8):880-886. [60] YU F,SUN L,MACHACA K.Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis[J].Proceedings of the National Academy of Sciences,2009,106(41):17401-17406. [61] WANG C,LEE K,GAJDÓCSI E,et al.Orai1 mediates store-operated Ca2+ entry during fertilization in mammalian oocytes[J].Developmental Biology,2012,365(2):414-423. [62] ZHANG L,CHAO C H,JAEGER L A,et al.Calcium oscillations in fertilized pig oocytes are associated with repetitive interactions between STIM1 and ORAI1[J].Biology of Reproduction,2018,98(4):510-519. [63] BERNHARDT M L,PADILLA-BANKS E,STEIN P,et al.Store-operated Ca2+ entry is not required for fertilization-induced Ca2+ signaling in mouse eggs[J].Cell Calcium,2017,65:63-72. [64] XING Y F,WANG M F,WANG J,et al.Dimerization of MICU proteins controls Ca2+ influx through the mitochondrial Ca2+ uniporter[J].Cell Reports,2019,26:1203-1212. [65] WANG F,LI A,LI Q N,et al.Effects of mitochondria-associated Ca2+ transporters suppression on oocyte activation[J].Cell Biochemistry and Function,2020,doi:10.1002/cbf.3571. [66] BACKS J,STEIN P,BACKSET T,et al.The γ isoform of CaM kinaseⅡ controls mouse egg activation by regulating cell cycle resumption[J].Proceedings of the National Academy of Sciences,2010,107(1):81-86. [67] WU J Q,KORNBLUTH S.Across the meiotic divide-CSF activity in the post Emi2/XErp1 era[J].Journal of Cell Science,2008,121(21):3509-3514. [68] GUZELOGLU-KAYISLI O,LALIOTI M D,AYDINER F,et al.Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice[J].Biochemical Journal,2012,446(1):47-58. [69] LIU Y,NIE H,LIU H,et al.Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails[J].Nature Communications,2019,10(1):52-92. [70] RADFORD H E,MEIJER H A,DE MOOR C H.Translational control by cytoplasmic polyadenylation in Xenopus oocytes[J].Biochimica et Biophysica Acta,2008,1779(4):217-229. [71] SETOYAMA D,YAMASHITA M,SAGATA N,et al.Mechanism of degradation of CPEB during Xenopus oocyte maturation[J].Proceedings of the National Academy of Sciences,2007,104(46):18001-18006. [72] KNOTT J G,GARDNER A J,MADGWICK S,et al.Calmodulin-dependent protein kinase Ⅱ triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations[J].Developmental Biology,2006,296(2):388-395. |
[1] | 张笑梦, 焦安惠, 王玉琪, 方南洙, 金庆国. 添加罗格列酮对小鼠卵母细胞氧化还原稳态的影响[J]. 中国畜牧兽医, 2023, 50(5): 1818-1827. |
[2] | 黎明国, 李清春, 陈鑫, 卢世豪, 何凡, 祁梦凡, 张化鹏, 任玉军, 张庆泽, 符彬彬, 徐梦思, 艾子凯, 闫坤, 冯赟, 华再东, 黄涛, 毕延震. TET去甲基化酶对猪卵母细胞发育的影响[J]. 中国畜牧兽医, 2023, 50(5): 1907-1917. |
[3] | 唐毓, 杨镒峰, 张颖, 薛海龙, 冯怀亮, 许保增. 貉卵母细胞成熟发育的细胞学研究[J]. 中国畜牧兽医, 2023, 50(4): 1434-1443. |
[4] | 徐茜, 杨宇泽, 郝海生, 杜卫华, 朱化彬, 杨柏高, 赵学明. 家畜卵母细胞和胚胎去脂方法研究进展[J]. 中国畜牧兽医, 2023, 50(2): 626-637. |
[5] | 张雨阳, 曲星霖, 陈璇, 吕艳秋, 曹立朋, 张君正, 金一. 泛素激活酶抑制剂对猪精子获能状态、膜重构及体外受精的影响[J]. 中国畜牧兽医, 2023, 50(1): 210-219. |
[6] | 莫显红, 岳凯平, 孙丽瑶, 李冰, 赵冰, 郭成, 徐振军. 2-氨基乙基联苯基硼酸酯对玻璃化冷冻牛成熟卵母细胞发育能力的影响[J]. 中国畜牧兽医, 2022, 49(7): 2669-2676. |
[7] | 吉文汇, 王玉玲, 何翃闳, 付伟, 兰道亮. 维生素A对牦牛卵母细胞体外成熟及后续胚胎发育能力的影响[J]. 中国畜牧兽医, 2022, 49(12): 4707-4714. |
[8] | 焦安惠, 张笑梦, 赵予晗, 王宇, 高青山. 柠檬苦素对小鼠卵母细胞体外成熟及其体外受精胚胎发育的影响[J]. 中国畜牧兽医, 2022, 49(10): 3891-3900. |
[9] | 王宇, 赵予晗, 焦安惠, 王玉琪, 高青山. 乙草胺对小鼠卵母细胞体外成熟的影响[J]. 中国畜牧兽医, 2022, 49(10): 3909-3917. |
[10] | 李晓霞, 肖红卫, 曹平华, 徐志谦, 张芳, 张志阳, 荆鹏华, 禹学礼, 栗颖华. 海藻糖对牛未成熟卵母细胞玻璃化冷冻的影响[J]. 中国畜牧兽医, 2022, 49(1): 224-231. |
[11] | 李玲玉, 郑海英, 陈明棠, 唐丽萍, 尚江华, 杨春艳. 卵母细胞来源对水牛体细胞核移植胚胎发育潜能的影响[J]. 中国畜牧兽医, 2022, 49(1): 241-247. |
[12] | 姚颖, 陈艳, 熊显荣, 泽让东科, 柴志欣, 吉文汇, 兰道亮. G蛋白偶联受体50在牦牛卵母细胞体外成熟过程中的表达与亚细胞定位研究[J]. 中国畜牧兽医, 2021, 48(9): 3387-3393. |
[13] | 薛梦琦, 周悦, 刘可可, 王欣雨, 董胤余, 唐小川, 王晓丽. 玻璃化冷冻对猪MⅡ期卵母细胞及其DNA的影响[J]. 中国畜牧兽医, 2021, 48(7): 2475-2483. |
[14] | 郝肖琼, 武占营, 崔艳颖, 史秀杰. 冷冻保存对公猪精子功能的影响[J]. 中国畜牧兽医, 2021, 48(5): 1699-1706. |
[15] | 王腾飞, 张燕, 王彦平, 赵善江, 朱化彬, 王玲玲, 麻柱, 戴蕴平, 庞云渭. 奶牛活体采卵-体外受精效率的影响因素研究[J]. 中国畜牧兽医, 2021, 48(2): 574-580. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 704
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||