[1] 陈雪娇,钟海安,张博,等.藏鸡高原低氧适应性微进化机制研究进展[J].中国畜牧杂志,2023,59(2):1-5.CHEN X J,ZHONG H A,ZHANG B,et al.Research progress on microevolution mechanism of high-altitude hypoxic adaptation in Tibetan chicken[J].Chinese Journal of Animal Science,2023,59(2):1-5.(in Chinese) [2] 纪韦韦,徐银,洪文龙.雪山草鸡氨基酸组成与营养价值研究[J].安徽农业科学,2012,40(21):10919-10921.JI W W,XU Y,HONG W L.Study on the amino acid composition and nutritional value of Xueshan chicken[J].Journal of Anhui Agricultural Sciences,2012,40(21):10919-10921.(in Chinese) [3] BRAUN T,GAUTEL M.Transcriptional mechanisms regulating skeletal muscle differentiation,growth and homeostasis[J].Nature Reviews Molecular Cell Biology,2011,12(6):349-361. [4] BUCKINGHAM M.Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(23):5830-5837. [5] 闫俊书,周维仁,宦海林,等.家禽肌纤维的生长发育规律及其调控[J].江苏农业科学,2010,5:276-279.YAN J S,ZHOU W R,HUAN H L,et al.The growth traits and regulation of myofiber in poultry[J].Jiangsu Agricultural Sciences,2010,5:276-279.(in Chinese) [6] 宋陈玲,姚婕,王继文.鸟类胚胎期肌肉发育的影响因素分析[J].中国家禽,2012,34(21):54-55.SONG C L,YAO J,WANG J W.Analysis of influencing factors of muscle development in bird embryo[J].China Poultry,2012,34(21):54-55.(in Chinese) [7] LIU J,LI F,HU X,et al.Deciphering the miRNA transcriptome of breast muscle from the embryonic to post-hatching periods in chickens[J].BMC Genomics,2021,22(1):64. [8] BARTEL D P.microRNAs:Target recognition and regulatory functions[J].Cell,2009,136(2):215-233. [9] XU Z,LIU Q,NING C,et al.miRNA profiling of chicken follicles during follicular development[J].Scientific Reports,2024,14(1):2212. [10] 丛百林,薛吕帆,盖凯,等.利用miRNA测序技术鉴定调控种公鸡精子发生的候选基因[J].华北农学报,2022,37(S1):333-338.CONG B L,XUE L F,GAI K,et al.Identification of candidate genes regulating spermatogenesis in breeder cocks by miRNA sequencing[J].Acta Agriculturae Boreali-Sinica,2022,37(S1):333-338.(in Chinese) [11] O'ROURKE J R,GEORGES S A,SEAY H R,et al.Essential role for dicer during skeletal muscle development[J].Developmental Biology,2007,311(2):359-368. [12] ZHAO J,ZHAO X,SHEN X,et al.circCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/Akt signaling pathway[J].Poultry Science,2022,101(5):101803. [13] DEY P,SOYER M,DEY B.microRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1[J].Cellular and Molecular Life Sciences,2022,79(3):170. [14] YUAN C,XIE H,CHEN X,et al.Roles of miR-196a and miR-196b in zebrafish motor function[J].Biomolecules,2023,13(3):554. [15] WANG X Y,CHEN X L,HUANG Z Q,et al.microRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression[J].Animal,2017,11(12):2268-2274. [16] ZHANG Z,DENG K,KANG Z,et al.microRNA profiling reveals miR-145-5p inhibits goat myoblast differentiation by targeting the coding domain sequence of USP13[J].Federation of American Societies for Experimental Biology Journal,2022,36(7):e22370. [17] ALI A,MURANI E,HADLICH F,et al.Prenatal skeletal muscle transcriptome analysis reveals novel microRNA-mRNA networks associated with intrauterine growth restriction in pigs[J].Cells,2021,10(5):1007. [18] HE M,ZHANG W,WANG S,et al.microRNA-181a regulates the proliferation and differentiation of Hu sheep skeletal muscle satellite cells and targets the YAP1 gene[J].Genes (Basel),2022,13(3):520. [19] WANG J,YANG L Z,ZHANG J S,et al.Effects of microRNAs on skeletal muscle development[J].Gene,2018,668:107-113. [20] RAZA S H A,KASTER N,KHAN R,et al.The role of microRNAs in muscle tissue development in beef cattle[J].Genes (Basel),2020,11(3):295. [21] SHINTANI-ISHIDA K,TSURUMI R,IKEGAYA H.Decrease in the expression of muscle-specific miRNAs,miR-133a and miR-1,in myoblasts with replicative senescence[J].PLoS One,2023,18(1):e0280527. [22] CHEN J F,MANDEL E M,THOMSON J M,et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J].Nature Genetics,2006,38(2):228-233. [23] LIU N,BEZPROZVANNAYA S,WILLIAMS A H,et al.microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J].Genes and Development,2008,22(23):3242-3254. [24] FAN X,XING Y,LIU L,et al.Screening of microRNAs with potential systemic effects released from goose fatty liver[J].Journal of Poultry Science,2021,58(4):263-269. [25] MIAO X,LIU L,LIU L,et al.Regulation of mRNA and miRNA in the response to Salmonella enterica serovar enteritidis infection in chicken cecum[J].Biomed Central Veterinary Research,2022,18(1):437. [26] CHAN Y C,BANERJEE J,CHOI S Y,et al.miR-210:The master hypoxamir[J].Microcirculation,2012,19(3):215-223. [27] YANG X,SHI L,YI C,et al.miR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1[J].American Journal of Cancer Research,2017,7(8):1738-1753. [28] EVANGELISTA A F,OLIVEIRA R J,VA O S,et al.Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer[J].BMC Cancer,2021,21(1):76. [29] CHEN Q,ZHANG H,ZHANG J,et al.miR-210-3p promotes lung cancer development and progression by modulating USF1 and PCGF3[J].OncoTargets and Therapy,2021,14:3687-3700. [30] CICCHILLITTI L,DI STEFANO V,ISAIA E,et al.Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts[J].Journal of Biological Chemistry,2012,287(53):44761-44771. [31] MUTHARASAN R K,NAGPAL V,ICHIKAWA Y,et al.microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-and p53-dependent pathways and exerts cytoprotective effects[J].American Journal of Physiology Heart and Circulatory Physiology,2011,301(4):H1519-H1530. [32] CHAN S Y,ZHANG Y Y,HEMANN C,et al.microRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2[J].Cell Metabolism,2009,10(4):273-284. [33] ZOU J F,WU X N,SHI R H,et al.Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28[J].European Review for Medical and Pharmacological Sciences,2020,24(21):11251-11258. [34] HUANG J,LI X,LI H,et al.Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases[J].International Journal of Clinical and Experimental Pathology,2015,8(11):14221-14227. [35] GURHA P,CHEN X,LOMBARDI R,et al.Knockdown of plakophilin 2 downregulates miR-184 through CpG hypermethylation and suppression of the E2F1 pathway and leads to enhanced adipogenesis in vitro[J].Circulation Research,2016,119(6):731-750. [36] SANGER J W,WANG J,FAN Y,et al.Assembly and maintenance of myofibrils in striated muscle[J].Handbook of Experimental Pharmacology,2017,235:39-75. [37] BOUJU S,PIÉTU G,LE CUNFF M,et al.Exclusion of muscle specific actinin-associated LIM protein (ALP) gene from 4q35 facioscapulohumeral muscular dystrophy (FSHD) candidate genes[J].Neuromuscular Disorders,1999,9(1):3-10. [38] YIN H,ZHAO J,HE H,et al.gga-miR-3525 targets PDLIM3 through the MAPK signaling pathway to regulate the proliferation and differentiation of skeletal muscle satellite cells[J].International Journal of Molecular Sciences,2020,21(15):5573. [39] YANG Y.Skeletal morphogenesis during embryonic development[J].Critical Reviews in Eukaryotic Gene Expression,2009,19(3):197-218. [40] MATSUOKA K,PARK K A,ITO M,et al.Osteoclast-derived complement component 3a stimulates osteoblast differentiation[J].Journal of Bone and Mineral Research,2014,29(7):1522-1530. [41] VAFIADAKI E,ARVANITIS D A,SANOUDOU D.Muscle LIM protein:Master regulator of cardiac and skeletal muscle functions[J].Gene,2015,566(1):1-7. [42] KONG Y,FLICK M J,KUDLA A J,et al.Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD[J].Molecular And Cellular Biology,1997,17(8):4750-4760. [43] CUI C,HAN S,TANG S,et al.The autophagy regulatory molecule CSRP3 interacts with LC3 and protects against muscular dystrophy[J].International Journal of Molecular Sciences,2020,21(3):749. [44] XIONG Y,WANG Y,XU Q,et al.LKB1 regulates goat intramuscular adipogenesis through focal adhesion pathway[J].Frontiers in Physiology,2021,12:755598. [45] HUANG H,LIU L,LI C,et al.Fat mass and obesity-associated (FTO) gene promoted myoblast differentiation through the focal adhesion pathway in chicken[J].3 Biotech,2020,10(9):403. [46] LI Y,CHEN Y,LIAO Y,et al.Photobiomodulation therapy moderates cancer cachexia-associated muscle wasting through activating PI3K/Akt/FoxO3a pathway[J].Apoptosis,2024,29(5-6):663-680. [47] YU H,ZHU G,WANG D,et al.PI3K/Akt/FOXO3a pathway induces muscle atrophy by ubiquitin-proteasome system and autophagy system in COPD rat model[J].Cell Biochem Biophys,2024,82(2):805-815. [48] KIMMICH M J,SUNDARAMURTHY S,GEARY M A,et al.FHOD-1/profilin-mediated actin assembly protects sarcomeres against contraction-induced deformation in C.elegans[J].BioRxiv,2024,3:582848. |