[1] YOSTAWONKUL J,NITTAYASUT N,PHASUK A,et al.Nano/microstructured hybrid composite particles containing cinnamon oil as an antibiotic alternative against food-borne pathogens[J].Journal of Food Engineering,2021,290(3):110209. [2] 操义恒,马雪,张丽媛,等.致犊牛脑炎大肠杆菌分离鉴定、耐药性及毒力基因检测[J].中国兽医学报,2022,42(7):1411-1417.CAO Y H,MA X,ZHANG L Y,et al.Isolation and identification of E.coli causing calf encephalitis and detection of drug resistance and virulence gene[J].Chinese Journal of Veterinary Science,2022,42(7):1411-1417.(in Chinese) [3] HAVELAAR A H,KIRK M D,TORGERSON P R,et al.World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010[J].PLoS Medicine,2015,12(12):e1001923. [4] DIAS-ALVES A,ESPUNYES J,AYATS T,et al.Foodborne pathogens at the livestock-wildlife-human interface in rural Western Uganda[J].EcoHealth,2023,20(2):144-149. [5] 田丽,吴显伟,周伟,等.胞内寄生菌对巨噬细胞免疫逃逸的研究进展[J].中国免疫学杂志,2023,39(10):2086-2091.TIAN L,WU X W,ZHOU W,et al.Advances in study of immune escape of macrophages by intracellular parasitic[J].Chinese Journal of Immunology,2023,39(10):2086-2091.(in Chinese) [6] ARDAKANI Z,CANALI M,ARAGRANDE M,et al.Evaluating the contribution of antimicrobial use in farmed animals to global antimicrobial resistance in humans[J].One Health,2023,17(2):100647. [7] BILLAH M M,RAHMAN M S.Salmonella in the environment:A review on ecology,antimicrobial resistance,seafood contaminations,and human health implications[J].Journal of Hazardous Materials Advances,2024,13(1):100407. [8] WANG J,ZHU X,ZHAO Y,et al.Prevalence and antimicrobial resistance of Salmonella and ESBL E.coli isolated from dairy cattle in Henan province,China[J].Preventive Veterinary Medicine,2023,213(4):105856. [9] WANG J,ZHU X,WANG Z,et al.Prevalence and antimicrobial resistance of Salmonella and the enumeration of ESBL E.coli in dairy farms in Hubei province,China[J].Preventive Veterinary Medicine,2023,212(3):105822. [10] 邢俏.沈阳地区宠物源金黄色葡萄球菌分离株毒力基因检测及耐药性分析[D].沈阳:沈阳农业大学,2023.XING Q.Detection of virulence genes and drug resistance of Staphylococcus aureus isolated from pets in Shenyang area[D].Shenyang:Shenyang Agricultural University,2023.(in Chinese). [11] 郭丹.动物源性金黄色葡萄球菌的耐药性和分子特征研究[D].广州:广东药科大学,2020.GUO D.Antimicrobial resistance and molecular characteristics of Staphylococcus aureus isolated from animals[D].Guangzhou:Guangdong Pharmaceutical University,2020.(in Chinese) [12] MAKABENTA J M V,NABAWY A,LI C H,et al.Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J].Nature Reviews Microbiology,2020,19(1):23-36. [13] ZHAO Q,LIU J,LIU S,et al.Multipronged micelles-hydrogel for targeted and prolonged drug delivery in chronic wound infections[J].ACS Applied Materials & Interfaces,2022,14(41):46224-46238. [14] GUO Y,FENG H,LI W,et al.Enzyme and pH dual-responsive CAP@CS@PLGA microcapsules for controlled release antibacterial application[J].Biochemical Engineering Journal,2023,196(7):108956. [15] ROSSI I,BUTTINI F,SONVICO F,et al.Sodium hyaluronate nanocomposite respirable microparticles to tackle antibiotic resistance with potential application in treatment of mycobacterial pulmonary infections[J].Pharmaceutics,2019,11(5):203-226. [16] RAHIMI M,NORUZI E B,SHEYKHSARAN E,et al.Carbohydrate polymer-based silver nanocomposites:Recent progress in the antimicrobial wound dressings[J].Carbohydrate Polymers,2020,231(5):115696. [17] WANG Y,CHEN L,WANG Y,et al.Marine biomaterials in biomedical nano/micro-systems[J].Journal of Nanobiotechnology,2023,21(1):408-456. [18] PENG Z,HE Y,WANG D,et al.Double emulsion (W/O/W) microcapsule preparation of novel bacteriocin lactococcin036019 with synergistic compound vitamin C prolongs the antibacterial activity in food matrix[J].Food Bioscience,2024,57(1):103597. [19] LEONG C Y,WAHAB R A,LEE S L,et al.Current perspectives of metal-based nanomaterials as photocatalytic antimicrobial agents and their therapeutic modes of action:A review[J].Environmental Research,2023,227(12):115578. [20] HAN J,CHEN Y,XIANG X,et al.A comparative analysis of the antibacterial spectrum of ultrasmall manganese ferrite nanozymes with varied surface modifications[J].ACS Applied Materials & Interfaces,2024,16(12):14385-14404. [21] LIAQAT M,YOUNAS A,IQBAL T,et al.Synthesis and characterization of ZnO/BiVO4 nanocomposites as heterogeneous photocatalysts for antimicrobial activities and waste water treatment[J].Materials Chemistry and Physics,2024,315(5):128923. [22] OUYANG Y,ZHAO J,WANG S.Multifunctional hydrogels based on chitosan,hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease:A review[J].International Journal of Biological Macromolecules,2023,227(4):505-523. [23] YE M,ZHAO Y,WANG Y,et al.A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections[J].Advanced Materials,2021,33(9):2006772. [24] YANG K,WANG X,HUANG R,et al.Prebiotics and postbiotics synergistic delivery microcapsules from microfluidics for treating colitis[J].Advanced Science,2022,9(16):e2104089. [25] KHORSANDI K,KEYVANI-GHAMSARI S,KHATIBI SHAHIDI F,et al.A mechanistic perspective on targeting bacterial drug resistance with nanoparticles[J].Journal of Drug Targeting,2021,29(9):941-959. [26] DE JESÚS VALLE M J,LÓPEZ DÍAZ D,VELÁZQUEZ SALICIO M,et al.Development and in vitro evaluation of a novel drug delivery system (albumin microspheres containing liposomes) applied to vancomycin[J].Journal of Pharmaceutical Sciences,2016,105(7):2180-2187. [27] WERNER J,UMSTÄTTER F,HERTLEIN T,et al.Oral delivery of the vancomycin derivative FU002 by a surface-modified liposomal nanocarrier[J].Advanced Healthcare Materials,2024,13(14):e2303654. [28] LUO Y,SU L,YANG H,et al.A disulfide molecule-vancomycin nanodrug delivery system efficiently eradicates intracellular bacteria[J].Journal of Materials Chemistry B,2024,12(9):2334-2345. [29] LI J,WANG Y,YANG J,et al.Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing[J].Chemical Engineering Journal,2021,420(2):127638. [30] CHEN X,YANG H,LI C,et al.Enhancing the targeting performance and prolonging the antibacterial effects of clove essential oil liposomes to Campylobacter jejuni by antibody modification[J].Food Research International,2023,167(5):112736. [31] KARIMI M,GHASEMI A,SAHANDI ZANGABAD P,et al.Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems[J].Chemical Society Reviews,2016,45(5):1457-1501. [32] SHABKHIZ M A,KHALIL PIROUZIFARD M,PIRSA S,et al.Alginate hydrogel beads containing Thymus daenensis essential oils/glycyrrhizic acid loaded in β-cyclodextrin.Investigation of structural,antioxidant/antimicrobial properties and release assessment[J].Journal of Molecular Liquids,2021,344(24):117738. [33] YUAN Y,LIU Y,HE Y,et al.Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis[J].Biomaterials,2022,287(8):121613. [34] MA L,TAN Y,CHEN X,et al.Injectable oxidized alginate/carboxylmethyl chitosan hydrogels functionalized with nanoparticles for wound repair[J].Carbohydrate Polymers,2022,293(18):119733. [35] CHAI Z,DONG H,SUN X,et al.Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice[J].International Journal of Biological Macromolecules,2020,159(14):640-647. [36] MONTASER A S,ABDEL-MOHSEN A M,RAMADAN M A,et al.Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds[J].International Journal of Biological Macromolecules,2016,92(11):739-747. [37] 雷燕,黄志深,尹玮璐,等.食源性金黄色葡萄球菌分离株肠毒素及耐药性分析[J].中国食品药品监管,2023,7:74-79.LEI Y,HUANG Z S,YIN W L,et al.Analysis of enterotoxin and antimicrobial resistance in foodborne Staphylococcus aureus isolates[J].China Food & Drug Administration Magazine,2023,7:74-79.(in Chinese) [38] 吴健灏,李欣,徐馨雨,等.食源性金黄色葡萄球菌肠毒素基因分布、耐药性及分型研究[J].实用预防医学,2023,30(3):257-261.WU J H,LI X,XU X Y,et al.Enterotoxin gene distribution,antimicrobial resistance and molecular typing of foodborne Staphylococcus aureus[J].Practical Preventive Medicine,2023,30(3):257-261.(in Chinese) [39] 李辉,闫琳,陈伟伟,等.我国食源性金黄色葡萄球菌耐药及遗传特征情况研究[J].中国食品卫生杂志,2023,35(6):801-806.LI H,YAN L,CHEN W W,et al.Resistance and genotype characterization of foodborne Staphylococcus aureus in China[J]. Chinese Journal of Food Hygiene,2023,35(6):801-806.(in Chinese) [40] 赵朵,裴曼君,张文乐,等.鄂西北地区食源性金黄色葡萄球菌污染及耐药性和毒力基因分析[J].中国食品卫生杂志,2020,32(6):620-625.ZHAO D,PEI M J,ZHANG W L,et al.Analysis of resistance and virulence genes of foodborne Staphylococcus aureus in Northwestern Hubei province[J].Chinese Journal of Food Hygiene,2020,32(6):620-625.(in Chinese) [41] 袁淑红,芮鸿飞,刘青,等.杭州市临安区市售奶茶中金黄色葡萄球菌污染情况及肠毒素与耐药性分析[J].中国卫生检验杂志,2023,33(13):1573-1575.YUAN S H,RUI H F,LIU Q,et al.Analysis of Staphylococcus aureus contamination,enterotoxin and drug resistance in milk tea from Lin’an district of Hangzhou city[J].Chinese Journal of Health Laboratory,2023,33(13):1573-1575.(in Chinese) [42] SALAMANDANE A,CORREIA J,MUETANENE B A,et al.Methicillin resistance of food-borne biofilm-forming staphylococci[J].Applied Sciences,2023,13(13):7725. [43] 李瑜瑶,高品一,李丹琦,等.植物提取物对动物腹泻致病菌的抑菌作用及机制研究进展[J].动物营养学报,2024,36(3):1515-1524.LI Y Y,GAO P Y,LI D Q,et al.Research progress on bacteriostasis of plant extracts on pathogenic bacteria of animal diarrhea and its mechanism[J].Chinese Journal of Animal Nutrition,2024,36(3):1515-1524.(in Chinese) [44] 王静,姜明明,任道平,等.肉桂精油在肉鸡生产中的应用研究进展[J].中国畜牧杂志,2024,60(1):49-53.WANG J,JIANG M M,REN D P,et al.Research progress on the application of cinnamon essential oil in broiler production[J]. Chinese Journal of Animal Science,2024,60(1):49-53.(in Chinese) [45] 陈咏琪,姜金珠,马志远,等.肉桂精油对动物体内外抗菌作用的研究进展[J].饲料研究,2023,46(11):168-171.CHEN Y Q,JIANG J Z,MA Z Y,et al.Research progress on antibacterial effect of cinnamon essential oil on animals in vitro and in vivo[J]. Feed Research,2023,46(11):168-171.(in Chinese) [46] ZAINEB T,UZAIR B,RIZG W Y,et al.Synthesis and characterization of calcium alginate-based microspheres entrapped with TiO2 nanoparticles and cinnamon essential oil targeting clinical Staphylococcus aureus[J].Pharmaceutics,2022,14(12):2764. [47] CHEN Y,XING Y,HAN J,et al.Multifunctional MMP9-responsive silicasomes-GelMA hydrogels with bacteria-targeting capability and tissue restoration function for chronic wound infection[J].Chemical Engineering Journal,2023,475(25):146246. [48] 陈尧贵,张熠,贾胜军,等.鸡沙门氏菌病研究进展[J].中国畜禽种业,2023,19(9):136-142.CHEN Y G,ZHANG Y,JIA S J,et al.Research progress of Salmonella in chickens[J].The Chinese Livestock and Poultry Breeding,2023,19(9):136-142.(in Chinese) [49] MAJOWICZ S E,MUSTO J,SCALLAN E,et al.The global burden of nontyphoidal Salmonella Gastroenteritis[J].Clinical Infectious Diseases,2010,50(6):882-889. [50] 刘科,周迪,李海忠,等.鸡源沙门氏菌流行病学调查及耐药性分析[J].畜牧兽医科技信息,2023,11:65-68.LIU K,ZHOU D,LI H Z,et al.Epidemiological investigation and drug resistance analysis of Salmonella from chickens[J].Chinese Journal of Animal Husbandry and Veterinary Medicine,2023,11:65-68.(in Chinese) [51] 徐兴昱,陈永芳,刘壮,等.姜黄素在畜禽养殖中的应用研究进展[J].中国畜牧杂志,2023,59(4):17-23.XU X Y,CHEN Y F,LIU Z,et al.Research progress on the application of curcumin in livestock and poultry production[J].Chinese Journal of Animal Science,2023,59(4):17-23.(in Chinese) [52] 卓儒浩,柳清扬,钟翔.姜黄素调控肠道菌群及抗病毒作用研究进展[J].畜牧兽医学报,2023,54(2):473-483.ZHUO R H,LIU Q Y,ZHONG X.Advances in the roles of curcumin on regulating gut microbiota and antiviral effects[J].Acta Veterinaria et Zootechnica Sinica,2023,54(2):473-483.(in Chinese) [53] 曹佳勇,刘媛,周杰,等.姜黄素纳米载体的制备与应用研究进展[J].食品工业,2023,44(8):187-192.CAO J Y,LIU Y,ZHOU J,et al.Progress in the preparation and application of curcumin nanocarriers[J].The Food Industry,2023,44(8):187-192.(in Chinese) [54] ASABUWA NGWABEBHOH F,ILKAR ERDAGI S,YILDIZ U.Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations:In vitro release,anticancer and antimicrobial activities[J].Carbohydrate Polymers,2018,201(23):317-328. [55] XU W,HUANG L,JIN W,et al.Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads[J].International Journal of Biological Macromolecules,2019,134(14):210-215. [56] HASHIM A F,HAMED S F,ABDEL HAMID H A,et al.Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads[J].International Journal of Biological Macromolecules,2019,140(20):682-696. [57] LIU M,YIN D,FU H,et al.Double-coated enrofloxacin microparticles with chitosan and alginate:Preparation,characterization and taste-masking effect study[J].Carbohydrate Polymers,2017,170:247-253. [58] XIE S,YANG F,TAO Y,et al.Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella[J].Scientific Reports,2017,7(1):41104. [59] KAUSHIK M,SARKAR N,SINGH A,et al.Nanomaterials to address the genesis of antibiotic resistance in Escherichia coli[J].Frontiers in Cellular and Infection Microbiology,2022,12(1):946184. [60] 李莹,褚秀玲,李晓丽,等.刺五加多酚合成纳米氧化锌及其抗氧化和抗菌性能研究[J].动物营养学报,2024,36(4):1-12.LI Y,CHU X L,LI X L,et al.Synthesis of zinc oxide nanoparticles using polyphenols from Acanthopanax senticosus and its antioxidant and antibacterial properties[J].Chinese Journal of Animal Nutrition,2024,36(4):1-12.(in Chinese) [61] SINHA R,SAHOO N R,SHRIVASTAVA K,et al.Resistance to ETEC F4/F18-mediated piglet diarrhoea:Opening the gene black box[J].Tropical Animal Health and Production,2019,51(6):1307-1320. [62] 刘汉锁,朴香淑,马红,等.不同形式氧化锌对断奶仔猪生长性能和肠道健康的影响[J].动物营养学报,2022,34(2):818-829.LIU H S,PIAO X S,MA H,et al.Effects of different forms of zinc oxide on growth performance and intestinal health of weaned piglets[J].Chinese Journal of Animal Nutrition,2022,34(2):818-829.(in Chinese) [63] 钟全,何源,周长忍.壳聚糖/纳米氧化锌复合微球的制备及其抑菌性能[A].全国卫生产业企业管理协会抗菌产业分会.2016年抗菌科学与技术论坛论文集[C].2016.ZHONG Q,HE Y,ZHOU C R.Preparation and antibacterial properties of chitosan/ZnO microspheres[A].Antimicrobial Industry Branch of the National Health Industry Enterprise Management Association.2016 Forum on Antimicrobial Science and Technology[C].2016.(in Chinese) [64] WANG L L,YANG C B,LIU S.Development and antibacterial activity of zinc oxide nanoparticles encapsulated in core-shell microparticles for managing enterotoxigenic Escherichia coli-related post-weaning diarrhea[J].Applied Nanoscience,2022,12(5):1449-1458. [65] HOSEINNEJAD M,JAFARI S M,KATOUZIAN I.Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications[J].Critical Reviews in Microbiology,2018,44(2):161-181. [66] 魏国涛,张群利,崔琳琳.生物法绿色合成纳米银及其抗菌应用进展[J].精细化工,2024,41(1):13-22.WEI G T,ZHANG Q L,CUI L L.Progress on green synthesis and antibacterial applications of silver nanoparticles by biological synthesis method[J].Fine Chemicals,2024,41(1):13-22.(in Chinese) [67] YADOLLAHI M,FARHOUDIAN S,NAMAZI H.One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems[J].International Journal of Biological Macromolecules,2015,79(8):37-43. [68] EL-AASSAR M R,MO X M.Development of porous alginate microbeads containing silver nanoparticles and their antibacterial efficacy[J].Advances in Polymer Technology,2016,35(3):298-306. [69] LI W,BAI L,FU P,et al.The epidemiology of Listeria monocytogenes in China[J].Foodborne Pathogens and Disease,2018,15(8):459-466. [70] 温燕龙.辣木籽素抑制单增李斯特菌的分子机制及其脂质体壳聚糖复合物的制备[D].昆明:云南农业大学,2023.WEN Y L.Molecular mechanism of inhibition of Listeria monocytogenes by moringin and preparation of liposomal-chitosan complexes[D].Kunming:Yunnan Agricultural University,2023.(in Chinese) [71] 李荣,陈家良,王洋,等.副溶血性弧菌引起食源性疾病暴发事件调查与病原特征分析[J].山西大学学报,2024,55(1):99-103.LI R,CHEN J L,WANG Y,et al.Investigation and pathogenic characteristics of food-borne disease outbreak caused by Vibrio parahaemolyticus[J].Journal of Shanxi Medical University,2024,55(1):99-103.(in Chinese) [72] 陈婷,周庆琼,戚平,等.2011-2020年中国食源性疾病流行病学分析[J].中国食品卫生杂志,2023,35(10):1545-1550.CHEN T,ZHOU Q Q,QI P,et al.Epidemiological analysis of foodborne diseases in China from 2011 to 2020[J].Chinese Journal of Food Hygiene,2023,35(10):1545-1550.(in Chinese) [73] ZHANG H C,QIU T T,BAI Y F,et al.Enhanced antibacterial activity of lysozyme loaded quaternary ammonium chitosan nanoparticles functionalized with cellulose nanocrystals[J].International Journal of Biological Macromolecules,2021,191(26):71-78. [74] SIKDER S,TOHA M,ANIK A H,et al.A comprehensive review on the fate and impact of antibiotic residues in the environment and public health:A special focus on the developing countries[J].Water Environment Research,2024,96(2):e10987. [75] ALLEN S D,LIU X S,JIANG J H,et al.Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor[J].Biomaterials,2021,269(6):120635. [76] RAJORA M A,DHALIWAL A,ZHENG M,et al.Quantitative pharmacokinetics reveal impact of lipid composition on microbubble and nanoprogeny shell fate[J].Advanced Science,2024,11(4):e2304453. [77] NIENHAUS K,WANG H,NIENHAUS G U.Nanoparticles for biomedical applications:Exploring and exploiting molecular interactions at the nano-bio interface[J].Materials Today Advances,2020,5(1):100036. [78] MONOPOLI M P,ÅBERG C,SALVATI A,et al.Biomolecular coronas provide the biological identity of nanosized materials[J].Nature Nanotechnology,2012,7(12):779-786. [79] 张文婷,胡明棣,蔡绒,等.纳米医学中蛋白冠的化学和生物学性质及其调控策略[J].科学通报,2023,68(32):4328-4345.ZHANG W T,HU M D,CAI R,et al.Chemical and biophysical characteristics of protein corona in nanomedicine and its regulatory strategies[J].Chinese Science Bulletin,2023,68(32):4328-4345.(in Chinese) [80] REN J,ANDRIKOPOULOS N,VELONIA K,et al.Chemical and biophysical signatures of the protein corona in nxanomedicine[J].Journal of the American Chemical Society,2022,144(21):9184-9205. [81] 周冬艳,姜晟,关志宇,等.蛋白冠对纳米粒体内循环的影响和应用研究进展[J].药学学报,2021,56(2):487-495.ZHOU D Y,JIANG S,GUAN Z Y,et al.Research progress on the effect of protein crown on the circulation of nanoparticles in vivo and its application[J]. Acta Pharmacy,2021,56(2):487-495.(in Chinese) [82] JI X,CAI Y,DONG X.Selection of an aggregation-caused quenchingbased fluorescent tracer for imaging studies in nano drug delivery systems[J].Nanoscale,2023,15(21):9290-9296. |