中国畜牧兽医 ›› 2024, Vol. 51 ›› Issue (7): 3086-3099.doi: 10.16431/j.cnki.1671-7236.2024.07.033
• 预防兽医 • 上一篇
鲜钰涵1,3, 冯宏盛1,3, 高永宇1,2,3, 李海洋1,3, 杨思宇1,3, 桑辰君1,3, 曹玉蝶1,3, 唐越1,3, 李子彬1,3, 高凤山1,3
收稿日期:
2023-12-12
发布日期:
2024-07-03
通讯作者:
李子彬, 高凤山
E-mail:李子彬,Email:lzb3250797@126.com;gfsh0626@126.com
作者简介:
鲜钰涵,E-mail:yuhanxian3646@163.com。
基金资助:
XIAN Yuhan1,3, FENG Hongsheng1,3, GAO Yongyu1,2,3, LI Haiyang1,3, YANG Siyu1,3, SANG Chenjun1,3, CAO Yudie1,3, TANG Yue1,3, LI Zibin1,3, GAO Fengshan1,3
Received:
2023-12-12
Published:
2024-07-03
摘要: 主要组织相容性复合体(major histocompatibility complex,MHC)Ⅰ类分子,也称为猪白细胞抗原(swine leukocyte antigen,SLA)Ⅰ类分子,在机体抗原递呈、器官移植、细胞免疫应答和调控等方面起重要作用。细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)表位是抗原经抗原递呈细胞加工后,与SLA-Ⅰ类分子结合并递呈的线性肽段,具有高度特异性,在机体抗原识别递呈和细胞免疫抵抗病毒感染方面发挥着关键作用。CTL表位能够刺激CTLs发挥细胞杀伤作用,主要表现为杀伤病毒。作者将对口蹄疫病毒、非洲猪瘟病毒和猪繁殖与呼吸综合征病毒等几种重要的猪源病毒的CTL表位研究现状进行综述,并利用生物信息学手段分析SLA-Ⅰ与CTL表位结合基序特征,以期为今后相关猪源病毒CTL表位的研究和多表位疫苗的设计提供参考。
中图分类号:
鲜钰涵, 冯宏盛, 高永宇, 李海洋, 杨思宇, 桑辰君, 曹玉蝶, 唐越, 李子彬, 高凤山. 猪源病毒细胞毒性T淋巴细胞表位研究进展[J]. 中国畜牧兽医, 2024, 51(7): 3086-3099.
XIAN Yuhan, FENG Hongsheng, GAO Yongyu, LI Haiyang, YANG Siyu, SANG Chenjun, CAO Yudie, TANG Yue, LI Zibin, GAO Fengshan. Advances in Cytotoxic T Lymphocyte Epitopes of Porcine Viruses[J]. China Animal Husbandry and Veterinary Medicine, 2024, 51(7): 3086-3099.
[1] KNIGHT-JONES T J D,RUSHTON J.The economic impacts of foot and mouth disease-What are they,how big are they and where do they occur?[J].Preventive Veterinary Medicine,2013,112(3-4):161-173. [2] 绪欣.口蹄疫的特点以及规模化猪场生物安全体系构建[J].中国动物保健,2023,25(2):91-92. XU X.Characteristics of foot-and-mouth disease and the construction of biosecurity system in large-scale pig farms[J].China Animal Health,2023,25(2):91-92.(in Chinese) [3] NEUMANN E J,KLIEBENSTEIN J B,JOHNSON C D,et al.Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States[J]. Journal of the American Veterinary Medical Association,2005,227(3):385-392. [4] ZHENG X J,NIE S M,FENG W H.Regulation of antiviral immune response by African swine fever virus (ASFV)[J].Virologica Sinica,2022,37(2):157-167. [5] 郭良珍,苗国防.非洲猪瘟的防控技术[J].北方牧业,2023,4:33. GUO L Z,MIAO G F.Prevention and control techniques for African swine fever[J].Beifang Muye,2023,4:33.(in Chinese) [6] YANG D,SUN C,GAO R,et al.A temperature-dependent translation defect caused by internal ribosome entry site mutation attenuates Foot-and-mouth disease virus:Implications for rational vaccine design[J]. Journal of Virology,2020,94(16):e00990-20. [7] ZHANG H,LUO Q,HE Y,et al.Research progress on the development of porcine reproductive and respiratory syndrome vaccines[J]. Veterinary Sciences,2023,10(8):491. [8] SEREDA A D,KAZAKOVA A S,NAMSRAYN S G,et al.Subsequent immunization of pigs with African swine fever virus (ASFV) seroimmunotype Ⅳ vaccine strain FK-32/135 and by recombinant plasmid DNA containing the CD2v derived from MK-200 ASFV seroimmunotype Ⅲ strain does not protect from challenge with ASFV seroimmunotype Ⅲ[J].Vaccines (Basel),2023,11(5):1007. [9] STENFELDT C,ARZT J.The carrier conundrum;A review of recent advances and persistent gaps regarding the carrier state of Foot-and-mouth disease virus[J].Pathogens,2020,9(3):167. [10] DE LOS SANTOS T,DIAZ-SAN SEGUNDO F,RODRIGUEZ L L.The need for improved vaccines against foot-and-mouth disease[J].Current Opinion in Virology,2018,29:16-25. [11] BERGMANN I E,MALIRAT V,PEDEMONTE A,et al.Challenges in Foot-and-mouth disease virus strain selection as an input to attain broad vaccine intraserotype cross-protection[J].Expert Review of Vaccines,2021,20(1):13-22. [12] O'DONNELL V,HOLINKA L G,SANFORD B,et al.African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge[J].Virus Research,2016,221:8-14. [13] DIAZ-SAN SEGUNDO F,SALGUERO F J,DE AVILA A,et al.Selective lymphocyte depletion during the early stage of the immune response to Foot-and-mouth disease virus infection in swine[J].Journal of Virology,2006,80(5):2369-2379. [14] CAI L,ZHANG J,ZHU R,et al.Protective cellular immunity generated by cross-presenting recombinant overlapping peptide proteins[J].Oncotarget,2017,8(44):76516-76524. [15] SECOMBES C J,BIRD S,ZOU J.Adaptive immunity in teleosts:Cellular immunity[J].Developments in Biologicals (Basel),2005,121:25-32. [16] DONG S,WANG P,ZHAO P,et al.Direct loading of iTEP-delivered CTL epitope onto MHC class Ⅰ complexes on the dendritic cell surface[J].Molecular Pharmaceutics,2017,14(10):3312-3321. [17] KHANNA R,SILINS S L,WENG Z P,et al.Cytotoxic T cell recognition of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope:Influence of peptide conformation and TCR-peptide interaction[J].European Journal of Immunology,1999,29(5):1587-1597. [18] SZETO C,LOBOS C A,NGUYEN A T,et al.TCR recognition of peptide-MHC-Ⅰ:Rule makers and breakers[J].International Journal of Molecular Sciences,2020,22(1):68. [19] MACNABB B W,KLINE J.MHC cross-dressing in antigen presentation[J].Advances in Immunology,2023,159:115-147. [20] RANGA V,NIEMELA E,TAMIRAT M Z,et al.Immunogenic SARS-CoV-2 epitopes:In silico study towards better understanding of COVID-19 disease-paving the way for vaccine development[J].Vaccines (Basel),2020,8(3):408. [21] RAND L M,WOODWARD C,MAY R,et al.Divergence between genes but limited allelic polymorphism in two MHC class Ⅱ A genes in Leach's storm-petrels Oceanodroma leucorhoa[J].Immunogenetics,2019,71(8-9):561-573. [22] ABBAS AK,LICHTMAN A H,PILLAI S.Cellular and Molecular Immunology[M].Holland:Elsevier,2018. [23] SVITEK N,SAYA R,ZHANG H,et al.Systematic determination of TCR-antigen and peptide-MHC binding kinetics among field variants of a theileria parva polymorphic CTL epitope[J].Journal of Immunology,2022,208(3):549-561. [24] ZHANG L,LI Z,TANG Z,et al.Efficient identification of Tembusu virus CTL epitopes in inbred HBW/B4 ducks using a novel MHC class Ⅰ-restricted epitope screening scheme[J].Journal of Immunology,2022,209(1):145-156. [25] MACDONALD I K,HARKIOLAKI M,HUNT L,et al.MHC class Ⅰ bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors[J].PLoS Pathogens,2010,6(10):e1001149. [26] WIECZOREK M,ABUALROUS E T,STICHT J,et al.Major histocompatibility complex (MHC) class Ⅰ and MHC class Ⅱ proteins:Conformational plasticity in antigen presentation[J].Frontiers in Immunology,2017,8:292. [27] DIXON A M,ROY S.Role of membrane environment and membrane-spanning protein regions in assembly and function of the class Ⅱ major histocompatibility complex[J].Human Immunology,2019,80(1):5-14. [28] DEL VAL M,ANTON L C,RAMOS M,et al.Endogenous TAP-independent MHC-Ⅰ antigen presentation:Not just the ER lumen[J].Current Opinion in Immunology,2020,64:9-14. [29] KOYANAGI N,KAWAGUCHI Y.Evasion of the cell-mediated immune response by Alphaherpesviruses[J].Viruses,2020,12(12):1354. [30] NEEFJES J,JONGSMA M L,PAUL P,et al.Towards a systems understanding of MHC class Ⅰ and MHC class Ⅱ antigen presentation[J].Nature Reviews Immunology,2011,11(12):823-836. [31] ZHOU X,JIA X,HUANG Z,et al.MHC class Ⅱ regulation of CD8+ T cell tolerance and implications in autoimmunity and cancer immunotherapy[J].Cell Reports,2023,42(11):113452. [32] GRUBMAN M J,BAXT B.Foot-and-mouth disease[J].Clinical Microbiology Reviews,2004,17(2):465-493. [33] MATEU M G,CAMARERO J A,GIRALT E,et al.Direct evaluation of the immunodominance of a major antigenic site of Foot-and-mouth-disease virus in a natural host[J].Virology,1995,206(1):298-306. [34] FERNANDEZ-SAINZ I,GAVITT T D,KOSTER M,et al.The VP1 G-H loop hypervariable epitope contributes to protective immunity against Foot and mouth disease virus in swine[J].Vaccine,2019,37(26):3435-3442. [35] MARTINEZ M A,HERNANDEZ J,PICCONE M E,et al.Two mechanisms of antigenic diversification of Foot-and-mouth disease virus[J].Virology,1991,184(2):695-706. [36] 李阳,马园,王国华,等.口蹄疫病毒O型泛亚株VP1蛋白的二级结构及抗原表位预测[J].中国动物检疫,2021,38(11):101-109. LI Y,MA Y,WANG G H,et al.Prediction of the secondary structure and epitopes of VP1 protein of FMDV-O PanAsia strain[J].China Animal Health Inspection,2021,38(11):101-109.(in Chinese) [37] 尚延丽,冯霞,靳野,等.口蹄疫病毒A/GDMM/CHA/2013株结构蛋白VP1 H-2d限制性CTL表位预测[J].安徽农业科学,2015,43(16):146-149. SHANG Y L,FENG X,JIN Y,et al.Prediction of H-2d restricted CTL epitope of structural protein VP1 of FMDV A/GDMM/CHA/2013 strains[J].Journal of Anhui Agriculture Science,2015,43(16):146-149.(in Chinese) [38] 巴利民,王振豹,齐鹏,等.猪SLA-1体外表达及其结合多肽的筛选[J].中国兽医杂志,2020,56(12):32-35. BA L M,WANG Z B,QI P,et al.Expression of swine SLA-1in vitro and screening the peptides[J].Chinese Journal of Veterinary Medicine,2020,56(12):32-35.(in Chinese) [39] 巴利民,王振豹,齐鹏,等.猪SLA-1分子结合多肽特性分析及功能验证[J].中国兽医杂志,2020,56(10):46-48. BA L M,WANG Z B,QI P,et al.Characterization and functional verification of porcine SLA-1 molecular binding peptides[J].Chinese Journal of Veterinary Medicine,2020,56(10):46-48.(in Chinese) [40] FENG L,GAO Y Y,SUN M,et al.The parallel presentation of two functional CTL epitopes derived from the O and Asia 1 serotypes of Foot-and-mouth disease virus and swine SLA-2*HB01:Implications for universal vaccine development[J].Cells,2022,11(24):4017. [41] YUE C,XIANG W,HUANG X,et al.Mooring stone-like Arg (114) pulls diverse bulged peptides:First insight into African swine fever virus-derived T cell epitopes presented by swine major histocompatibility complex class Ⅰ[J].Journal of Virology,2022,96(4):e0137821. [42] GAO F S,ZHAI X X,JIANG P,et al.Identification of two novel Foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-Ⅰ proteins[J].Gene,2018,653:91-101. [43] 李玲,夏应菊,宋新宇,等.非洲猪瘟病毒细胞嗜性的研究进展[J].中国兽医科学,2023,53(4):514-519. LI L,XIA Y J,SONG X Y,et al.Research progress on cytotoxicity of African swine fever virus[J].Chinese Veterinary Science,2023,53(4):514-519.(in Chinese) [44] ANDRES G,ALEJO A,SALAS J,et al.African swine fever virus polyproteins pp220 and pp62 assemble into the core shell[J].Journal of Virology,2002,76(24):12473-12482. [45] KAY-JACKSON P C,GOATLEY L C,COX L,et al.The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7[J].Journal of General Virology,2004,85:119-130. [46] MALOGOLOVKIN A,BURMAKINA G,TULMAN E R,et al.African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity[J].Journal of General Virology,2015,96:866-873. [47] ROS-LUCAS A,CORREA-FIZ F,BOSCH-CAMOS L,et al.Computational analysis of African swine fever virus protein space for the design of an epitope-based vaccine ensemble[J].Pathogens,2020,9(12):1078. [48] 王泽平,王飞飞,张芮铭,等.苏紫猪SLA-1基因多态性及其抗病潜能分析[J].中国畜牧兽医,2023,50(5):1918-1927. WANG Z P,WANG F F,ZHANG R M,et al.Analysis on polymorphism of SLA-1 gene and its disease resistance potential in Suzi pig[J].China Animal Husbandry&Veterinary Medicine,2023,50(5):1918-1927.(in Chinese) [49] 蔡建秋,曹雪莲,杨旸,等.非洲猪瘟病毒Pig/HLJ/2018分离株MGF多基因家族优势B、T细胞抗原表位分析[J].现代畜牧科技,2021,8:1-5. CAI J Q,CAO X L,YANG Y,et al.Analysis of dominant B and T cell antigenic epitopes of the MGF multigene family of African swine fever virus Pig/HLJ/2018 isolates[J].Modern Animal Husbandry Science&Technology,2021,8:1-5.(in Chinese) [50] 高瞻,邵军军,常艳燕,等.非洲猪瘟病毒p72蛋白抗原表位预测分析及多表位疫苗的构建[J].中国兽医杂志,2020,56(1):13-17. GAO Z,SHAO J J,CHANG Y Y,et al.Epitope prediction analysis of African swine fever virus p72 protein and construction of multi-epitope vaccine[J].Chinese Journal of Veterinary Medicine,2020,56(1):13-17.(in Chinese) [51] HERRERA L R M,BISA E P.In silico analysis of highly conserved cytotoxic T-cell epitopes in the structural proteins of African swine fever virus[J].Veterinary World,2021,14(10):2625-2633. [52] ZAJAC M D,SANGEWAR N,LOKHANDWALA S,et al.Adenovirus-vectored African swine fever virus pp220 induces robust antibody,IFN-γ,and CTL responses in pigs[J].Frontiers in Veterinary Science,2022,9:921481. [53] BOSCH-CAMÓS L,LOPEZ E,NAVAS M J,et al.Identification of promiscuous African swine fever virus T-cell determinants using a multiple technical approach[J].Vaccines,2021,9(1):29. [54] LUNNEY J K,FANG Y,LADINIG A,et al.Porcine reproductive and respiratory syndrome virus (PRRSV):Pathogenesis and interaction with the immune system[J].Annual Review of Animal Biosciences, 2016,4:129-154. [55] VAN BREEDAM W,DELPUTTE P L,VAN GORP H,et al.Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage[J].Journal of General Virology,2010,91:1659-1667. [56] YE N,WANG B,FENG W,et al.PRRS virus receptors and an alternative pathway for viral invasion[J].Virus Research,2022,320:198885. [57] XIE C Z,HA Z,SUN W C,et al.Construction and immunological evaluation of recombinant Adenovirus vaccines co-expressing GP3 and GP5 of EU-type Porcine reproductive and respiratory syndrome virus in pigs[J].Journal of Veterinary Medical Science,2019,81(12):1879-1886. [58] TANG T,WANG C,PU Q,et al.Vaccination of mice with Listeria ivanovii expressing the truncated M protein of Porcine reproductive and respiratory syndrome virus induces both antigen-specific CD4+ and CD8+ T cell-mediated immunity[J]. Journal of Molecular Microbiology and Biotechnology,2019,29(1-6):74-82. [59] LIANG C,XIA Q,ZHOU J,et al.Identification of potential SLA-Ⅰ-restricted CTL epitopes within the M protein of Porcine reproductive and respiratory syndrome virus[J]. Veterinary Microbiology,2021,259:109131. [60] 康溥,赵梦坡,黄育浩,等.猪繁殖与呼吸综合征病毒GP5蛋白的结构与功能研究进展[J].广东农业科学,2023,50(2):104-114. KANG P,ZHAO M P,HUANG Y H,et al.Progress in structure and function of GP5 protein of Porcine reproductive and respiratory syndrome virus[J].Guangdong Agricultural Sciences,2023,50(2):104-114.(in Chinese) [61] ZHANG M,HAN X,OSTERRIEDER K,et al.Palmitoylation of the envelope membrane proteins GP5 and M of Porcine reproductive and respiratory syndrome virus is essential for virus growth[J].PLoS Pathogens,2021,17(4):e1009554. [62] 李奇润,魏孝辉,夏春.大白猪和长白猪新复等位基因及其多态性与结合肽谱分析[J].中国兽医杂志,2021,57(3):1-5. LI Q R,WEI X H,XIA C.Analysis of SLA-Ⅰ new alleles polymorphism and binding polypeptide spectrum in Large White and Landrace pig[J].Chinese Journal of Veterinary Medicine,2021,57(3):1-5.(in Chinese) [63] 刘祥,陈琛,陈春琳,等.猪重要感染病毒蛋白的二级结构、抗原表位分析及三联表位多肽疫苗的重组预测[J].生物学杂志,2017,34(3):18-23. LIU X,CHEN C,CHEN C L,et al.The secondary structure,antigen epitope analysis and recombination prediction triple epitope peptide vaccine of porcine important infection virus protein[J].Journal of Biology,2017,34(3):18-23.(in Chinese) [64] 李红.猪繁殖与呼吸综合征病毒GP5蛋白与M蛋白抗原表位筛选及应用[D].郑州:郑州大学,2021. LI H.Epitope screening and application of GP5 protein and M proteinof Porcine reproductive and respiratory syndrome virus[D].Zhengzhou:Zhengzhou University,2021.(in Chinese) [65] PAN X,ZHANG N,WEI X,et al.Illumination of PRRSV cytotoxic T lymphocyte epitopes by the three-dimensional structure and peptidome of swine lymphocyte antigen class Ⅰ(SLA-Ⅰ)[J]. Frontiers in Immunology,2019,10:2995. [66] LIANG C,XIA Q H,ZHOU J M,et al.Identification of potential SLA-Ⅰ-restricted CTL epitopes within the M protein of Porcine reproductive and respiratory syndrome virus[J].Veterinary Microbiology,2021,259:109131. [67] GAO C,HE X,QUAN J,et al.Specificity characterization of SLA class Ⅰ molecules binding to swine-origin viral cytotoxic T lymphocyte epitope peptides in vitro[J].Frontiers in Microbiology,2017,8:2524. [68] YU S,OPRIESSNIG T,KITIKOON P,et al.Porcine circovirus type 2(PCV2) distribution and replication in tissues and immune cells in early infected pigs[J].Veterinary Immunology and Immunopathology,2007,115(3-4):261-272. [69] TRIBLE B R,ROWLAND R R R.Genetic variation of Porcine circovirus type 2(PCV2) and its relevance to vaccination,pathogenesis and diagnosis[J].Virus Research,2012,164(1-2):68-77. [70] KARUPPANNAN A K,OPRIESSNIG T.Porcine circovirus type 2(PCV2) vaccines in the context of current molecular epidemiology[J].Viruses-Basel,2017,9(5):99. [71] SIDLER X,SYDLER T,MATEOS J M,et al.Porcine circovirus type 2 pathogenicity alters host's central tolerance for propagation[J].Pathogens,2020,9(10):839. [72] 董茂丽.猪圆环病毒2型小鼠T细胞免疫应答与表位疫苗初步鉴定[D].扬州:扬州大学,2021. DONG M L.Preliminary study of T cell epitopes-based vaccine against Porcine circovirus type 2 in mice[D].Yangzhou:Yangzhou University,2021.(in Chinese) [73] 周文锋,张英婕,白一涵,等.猪圆环病毒2型全基因组序列分析及Cap蛋白CTL表位预测[J].中国畜牧兽医,2023,50(2):656-665. ZHOU W F,ZHANG Y J,BAI Y H,et al.Complete genome sequence analysis and Cap CTL epitopes prediction of Porcine circovirus type 2[J].China Animal Husbandry&Veterinary Medicine,2023,50(2):656-665.(in Chinese) [74] 李海玲,张世伟,冯亚莉,等.欧亚类禽H1N1猪流感病毒研究进展[J].沈阳农业大学学报,2022,53(4):492-503. LI H L,ZHANG S W,FENG Y L,et al.Research progress in the study of Eurasian avian-like H1N1 Swine influenza viruse[J].Journal of Shenyang Agricultural University,2022,53(4):492-503.(in Chinese) [75] ZHU R,XU S,SUN W,et al.Correction:HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 Influenza virus[J].Veterinary Research,2022,53(1):112. [76] CUI P,SHI J,WANG C,et al.Global dissemination of H5N1 Influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China[J]. Emerging Microbes&Infections,2022,11(1):1693-1704. [77] 陈艳,王飞飞,杨焕良,等.H3N2亚型猪流感病毒血凝素单克隆抗体的制备及其抗原表位的鉴定[J].中国预防兽医学报,2021,43(6):633-638. CHEN Y,WANG F F,YANG H L,et al.Preparation and epitope identification of monoclonal antibody against hemagglutinin protein of H3N2 Swine influenza virus[J].Chinese Journal of Preventive Veterinary Medicine,2021,43(6):633-638.(in Chinese) [78] 乔传玲,陈艳,杨焕良,等.一种杂交瘤细胞株、类禽型H1N1猪流感病毒HA蛋白MAb、抗原表位及应用:202011244388.1[P].2021-07-20. QIAO C L,CHEN Y,YANG H L,et al.A hybridoma cell line,avian H1N1-like Swine influenza virus HA protein MAb,antigenic epitopes and applications:2202011244388.1[P].2021-07-20.(in Chinese) [79] 张璞,陈建凯,赖月辉,等.猪瘟病毒检测和猪瘟疫苗研究进展[J].广东农业科学,2022,49(4):106-115. ZHANG P,CHEN J K,LAI Y H,et al.Research progress in Classical swine fever virus detection and classical swine fever vaccines[J].Guangdong Agricultural Sciences,2022,49(4):106-115.(in Chinese) [80] ZHANG Y,NA D,ZHANG W,et al.Development of stable HEK293T cell pools expressing CSFV E2 protein:A potential antigen expression platform[J].Vaccine,2023,41(9):1573-1583. [81] DESSELBERGER U.Rotaviruses[J].Virus Research,2014,190:75-96. [82] 黄正阳,陈宇婧,黄克,等.猪A组轮状病毒HN2019-01株的分离鉴定及VP6基因序列分析[J].河南农业科学,2021,50(6):125-133. HUANG Z Y,CHEN Y J,HUANG K,et al.Isolation and VP6 gene sequence analysis of porcine group A Rotavirus HN2019-01 strain[J].Journal of Henan Agricultural Sciences,2021,50(6):125-133.(in Chinese) [83] ZHANG N,QI J,FENG S,et al.Crystal structure of swine major histocompatibility complex class Ⅰ SLA-10401 and identification of 2009 pandemic swine-origin Influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides[J].Journal of Virology,2011,85(22):11709-11724. [84] FAN S,WU Y,WANG S,et al.Structural and biochemical analyses of swine major histocompatibility complex class Ⅰ complexes and prediction of the epitope map of important Influenza A virus strains[J].Journal of Virology,2016,90(15):6625-6641. [85] NING S,WANG Z B,QI P,et al.Crystallization of SLA-2*04:02:02 complexed with a CTL epitope derived from FMDV[J].Research in Veterinary Science,2020,128:90-98. [86] TUN G S,ORECCHIA M A,SWALLOW K,et al.Selection of phage display designer whole gene fragment library and random peptide library to identify linear and conformational epitopes on a biosimilar infliximab molecule[J].Gastroenterology,2022,162(7):S1091. [87] HAZEBROUCK S,PATIL S U,GUILLON B,et al.Immunodominant conformational and linear IgE epitopes lie in a single segment of Ara h 2[J].Journal of Allergy and Clinical Immunology,2022,150(1):131-139. [88] MOISE L,GUTIERREZ A H,KHAN S,et al.New immunoinformatics tools for swine:Designing epitope-driven vaccines,predicting vaccine efficacy,and making vaccines on demand[J].Frontiers in Immunology,2020,11:563362. [89] SRIVASTAVA P,JAIN C K.Computer aided reverse vaccinology:A game-changer approach for vaccine development[J]. Combinatorial Chemistry&High Throughput Screening,2023,26(10):1813-1821. [90] 何玉龙,李高建,舒金琪,等.一种基于反向疫苗学技术的猪肺炎支原体多表位基因工程亚单位疫苗的制备方法及其应用:202111664581.5[P].2023-06-13. HE Y L,LI G J,SU J Q,et al.Preparation of a multi-epitope genetically engineered subunit vaccine against Mycoplasma pneumoniae in pigs based on reverse vaccinology technology and its application:202111664581.5[P].2023-06-13.(in Chinese) |
[1] | 王美乐, 于扬帆, 徐朋, 陈青, 安珂兰·安维尔, 李姝璇, 杨松华, 尹素改, 冯书营. 非洲猪瘟病毒致病机制及防治策略研究进展[J]. 中国畜牧兽医, 2024, 51(7): 3041-3055. |
[2] | 向国庆, 孙菁晗, 宋帅, 温肖会, 吕殿红, 贾春玲, 牛瑞辉, 顾有方, 罗胜军. 非洲猪瘟病毒抗体化学发光检测方法的建立与应用[J]. 中国畜牧兽医, 2024, 51(4): 1362-1371. |
[3] | 李艳蕊, 任静, 崔锦蔷, 袁晨, 王云霄, 马亚娟, 刘志昌, 李永社, 宋勤叶. 非洲猪瘟病毒CD2v蛋白胞内域与胞外域的原核表达及其抗原性分析[J]. 中国畜牧兽医, 2024, 51(4): 1660-1670. |
[4] | 罗琴, 刘宝玲, 乔常宏, 陈翔宇, 刘丁语, 王晓虎, 王刚, 刘昊, 蔡汝健. 脂质代谢和糖代谢在PRRSV感染宿主细胞中作用研究进展[J]. 中国畜牧兽医, 2024, 51(4): 1686-1695. |
[5] | 王慧, 冯保亮, 向光明, 黄雷, 刘志国, 李奎, 牟玉莲. CD163单等位基因表达的iPAMs细胞系的构建及其介导PRRSV感染的特征分析[J]. 中国畜牧兽医, 2023, 50(7): 2617-2628. |
[6] | 马天天, 张亚楠, 冯亚文, 岳怀宁, 王亚文, 苏恺, 袁晨, 逯纪成, 孙泰然, 薛文阁, 宋勤叶. 非洲猪瘟病毒p30蛋白单克隆抗体的制备与鉴定[J]. 中国畜牧兽医, 2023, 50(7): 2832-2842. |
[7] | 康溥, 任照文, 蔡汝健, 吕宗吉, 黄育浩, 王晓虎. 广东及周边省份猪繁殖与呼吸综合征病毒2型谱系8毒株变异规律和传播研究[J]. 中国畜牧兽医, 2023, 50(5): 2001-2011. |
[8] | 张芳源, 蔺雅婷, 杨大为, 陈虎, 李桂梅, 单虎. 非洲猪瘟病毒P30蛋白原核表达及间接ELISA检测方法建立[J]. 中国畜牧兽医, 2023, 50(5): 2012-2022. |
[9] | 陈天宝, 王娅妮, 刘宝玲, 王刚, 王晓虎, 柳旭辉, 蔡汝健, 贺东生. 中药抗猪繁殖与呼吸综合征病毒的作用机制研究进展[J]. 中国畜牧兽医, 2023, 50(5): 2114-2129. |
[10] | 李华玮, 郭科威, 王旭英, 张小雨, 路紫微, 李新锋, 马辉, 侯文静. 猪繁殖与呼吸综合征病毒非结构蛋白7真核表达及亚细胞定位[J]. 中国畜牧兽医, 2023, 50(3): 1160-1168. |
[11] | 侯浩宇, 郑南南, 吴宏举, 陈寅龙, 李潮, 张昂克, 姬鹏超, 万博, 杜永坤, 张改平. 非洲猪瘟病毒p30蛋白单克隆抗体制备和鉴定[J]. 中国畜牧兽医, 2023, 50(3): 1241-1249. |
[12] | 李朋霏, 宋晓明, 周保琨, 曹志, 张洪亮, 马清霞, 单虎. 用于非洲猪瘟病毒核酸检测的假病毒阳性对照品的制备和标定[J]. 中国畜牧兽医, 2023, 50(2): 647-655. |
[13] | 陈桂娥, 容芳, 冯夏宁, 孙荣航, 马绍钊, 郝文茜, 叶子安, 刘郁夫, 李作生, 陈瑞爱. 非洲猪瘟病毒p72蛋白原核表达及单克隆抗体制备[J]. 中国畜牧兽医, 2023, 50(11): 4646-4654. |
[14] | 闫普普, 刘欣, 林冰, 刘佳丽, 夏瑾瑾, 黄永熙, 白若男, 刘国平, 杨小林, 郭利伟. 基于生物信息学探讨猪繁殖与呼吸综合征病毒感染特征及银花甘草汤防治机制[J]. 中国畜牧兽医, 2023, 50(10): 4196-4209. |
[15] | 张凯, 张春平, 戈胜强, 孙春喜, 程杰, 伏春雨, 王刚, 牛星, 彭军. 非洲猪瘟病毒p22蛋白表达、多克隆抗体制备及间接ELISA方法的建立[J]. 中国畜牧兽医, 2023, 50(1): 270-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||