›› 2013, Vol. 40 ›› Issue (4): 138-144.
丁丽, 曾长军
收稿日期:
2012-10-29
出版日期:
2013-04-20
发布日期:
2013-04-19
通讯作者:
曾长军(1975-),男,四川人,博士,副教授,主要从事动物繁殖生物技术和动物繁殖学教学科研工作。E-mail:zengchj@yahoo.com.cn;Tel:0835-2886080
E-mail:zengchj@yahoo.com.cn
作者简介:
丁丽(1986-),女,四川人,硕士生,研究方向:猪精液冷冻保存。
基金资助:
DING Li, ZENG Chang-jun
Received:
2012-10-29
Online:
2013-04-20
Published:
2013-04-19
摘要: 半胱氨酸天冬氨酸特异性蛋白酶(cysteinyl aspartate specific proteinase, Caspase)是直接导致凋亡细胞解体的蛋白酶家族,在细胞凋亡机制网络中处于中心地位。在精子发生发育过程中,机体通过生殖细胞凋亡与细胞增殖平衡机制来确保正常数量和质量的精子分化与成熟。精子冷冻保存会对精子造成不可逆的冷冻损伤,冷冻-解冻后,一些标志性凋亡现象会显著增多。作者对Caspase介导的细胞凋亡对精子发生发育及冷冻保存的影响机制进行了综述,表明精子发生发育和冷冻损伤与精子细胞凋亡存在密切的联系。
中图分类号:
丁丽, 曾长军. 半胱氨酸天冬氨酸特异性蛋白酶介导的细胞凋亡对精子发生发育及冷冻保存的影响[J]. , 2013, 40(4): 138-144.
DING Li, ZENG Chang-jun. Influences on Apoptosis Mediated by Caspases on Spermatogenesis, Development and Cryopreservation[J]. , 2013, 40(4): 138-144.
1 弓娟琴, 陈志强, 李文忠, 等. Fas介导的凋亡与 Caspase家族[J]. 国外医学:肿瘤学分册, 2001, 27(5):279~280. 2 王力俭, 田可川, 吴伟伟,等. 细胞凋亡信号传导通路的研究进展[J]. 中国畜牧兽医, 2011, 38(10): 132~135. 3 朱登祥, 盂昭影, 魏会平. 男性不育与精子凋亡关系的研究[J]. 中国优生与遗传杂志, 2009, 17(1):89~90. 4 宋旭东, 刘桦, 李巧云, 等. Caspase-3与生精细胞凋亡关系的研究[J]. 现代预防医学, 2007, 34 (2):223~224. 5 张树山, 李青旺, 李刚, 等. 海藻糖、蔗糖和乳糖对猪精液冷冻保护效果的影响[J]. 西北农林科技大学学报(自然科学版), 2006,34 (6):41~45,51. 6 陈同强.睾丸生殖细胞凋亡与男性不育[J]. 赣南医学院学报, 2000, 20(2): 161~163. 7 高雅, 罗桂河, 李卫东, 等. 不同浓度乙二醇和甘油对犬精液冷冻效果的影响[J]. 中国农学通报, 2010, 26(8):25~28. 8 曹兴午, 王传航, 周强, 等. 不育症精液生精细胞凋亡率检测[J]. 生殖医学杂志, 2008, 17(5):351~355. 9 Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility——a clinician’s perspective. Reprod Biomed Online, 2005,11:641~650. 10 Almeida C, Cardoso M F, Sousa M, et al. Quantitative study of caspase-3 activity in semen and after swim-up preparation in relation to sperm quality. Hum Reprod, 2005, 20:1307~1313. 11 Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell, 2003, 4:687~697. 12 Arnoult D, Petit F, Lelievre J D, et al. Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun, 2003, 304:561~574. 13 Ashkenazi A, Dixit V M. Death receptors: Signaling and modulation. Science, 1998, 281:1305~1308. 14 Aziz N, Said T, Paasch U, et al. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod, 2007, 22:1413~1419. 15 Blanco-Rodriguez J. A matter of death and life: The significance of germ cell death during spermatogenesis. Int J Androl, 1998, 21(5):236~248. 16 Bonzon C, Bouchier-Hayes L, Pagliari L J, et al. Caspase-2-induced apoptosis requires bid cleavage: A physiological role for bid in heat shock-induced death. Mol Biol Cell, 2006, 17:2150~2157. 17 Bozec A, Amara S, Guarmit B, et al. Status of the executioner step of apoptosis in human with normal spermatogenesis and azoospermia. Fertil Steril, 2008, 90:1723~1731. 18 Brugnon F, Janny L, Artonne C, et al. Activated caspases in thawed epididymal and testicular spermatozoa of patients with congenital bilateral absence of the vas deferens and intracytoplasmic sperm injection outcome. Fertil Steril, 2009, 92:557~564. 19 Brum A M, Sabeur K, Ball B A. Apoptotic-like changes in equine spermatozoa separated by density-gradient centrifugation or after cryopreservation. Theriogenology, 2008, 69:1041~1055. 20 Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 1999, 15:269~290. 21 Carvajal G, Cuello C, Ruiz M, et al. Effects of centrifugation before freezing on boar sperm cryosurvival. J Androl, 2004, 25:389~396. 22 Cerolini S, Maldjian A, Surai P, et al. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim Reprod Sci, 2000, 58:99~111. 23 Choi Y J, Uhm S J, Song S J, et al. Cytochrome c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J Reprod Dev, 2008, 54:68~83. 24 Cryns V, Yuan J. Proteases to die for. Genes Dev, 1998, 12: 1551~1570. 25 Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene, 2003, 22(53): 8543~8567. 26 Dorstyn L, Puccini J, Wilson C H, et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ, 2012, 19:1288~1298. 27 Duru N K, Morshedi M S, Schuffner A, et al. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl, 2001, 22:646~651. 28 Fraser L, Parda A, Filipowicz K, et al. Comparison of post-thaw DNA integrity of boar spermatozoa assessed with the neutral comet assay and sperm-sus Halomax test kit. Reprod Domest Anim, 2010, 45:e155~e160. 29 Groenendyk J, Michalak M. Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol, 2005, 52: 381~395. 30 Grunewald S, Paasch U, Wuendrich K, et al. Sperm caspases become more activated in infertility patients than in healthy donors during cryopreservation. Arch Androl, 2005, 51:449~460. 31 Grunewald S, Said T M, Paasch U, et al. Relationship between sperm apoptosis signalling and oocyte penetration capacity. Int J Androl, 2008, 31:325~330. 32 Grunewald S, Kriegel C, Baumann T, et al. Interactions between apoptotic signal transduction and capacitation in human spermatozoa. Hum Reprod, 2009a, 24:2071~2078. 33 Grunewald S, Sharma R, Paasch U, et al. Impact of caspase activation in human spermatozoa. Microsc Res Tech, 2009b, 72(11):878~888. 34 Guo Y, Srinivasula S M, Druilhe A, et al. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem, 2002, 277:13430~13437. 35 Gutierrez-Perez O, Juarez-Mosqueda Mde L, Carvajal S U, et al. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. Cryobiology, 2009, 58(3):287~292. 36 Hacker G, Paschen S A. Therapeutic targets in the mitochondrial apoptotic pathway. Expert Opin Ther Targets, 2007, 11: 515~526. 37 Hikim A P, Wang C, Lue Y, et al. Spontaneous germ cell apoptosis in humans: Evidence for ethnic differences in the susceptibility of germ cells to programmed cell death. J Clin Endocrinol Metab, 1998, 83:152~156. 38 Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol, 2004, 165:347~356. 39 Ho L H, Read S H, Dorstyn L, et al. Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene, 2008, 27:3393~3404. 40 Jeong Y J, Kim M K, Song H J, et al. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. Cryobiology, 2009, 58:181~189. 41 eyendran R S, Van der Ven H H, Perez-Pelaez M, et al. Effect of glycerol and cryopreservation on oocyte penetration by human spermatozoa. Andrologia, 1985, 17:241~248. 42 Jha R, Agarwal A, Mahfouz R, et al. Determination of poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril, 2009, 91:782~790. 43 Kerr J F, Wyllie A H, Currie A R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26: 239~257. 44 Kim J M, Ghosh S R, Weil A C, et al. Caspase-3 and caspase-activated deoxyribonuclease are associated with testicular germ cell apoptosis resulting from reduced intratesticular testosterone. Endocrinology, 2001, 142:3809~3816. 45 Kim S, Lee Y J, Ji D B, et al. Evaluation of different cryoprotectants (CPAs) in boar semen cryopreservation. J Vet Med Sci, 2011, 73:961~963. 46 Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science, 2002, 297:1352~1354. 47 Li H, Zhu H, Xu C J, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998, 94:491~501. 48 Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91:479~489. 49 Macias Garcia B, Ortega Ferrusola C, Aparicio I M, et al. Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology, 2012, 77:1280~1289. 50 Mantovani R, Rora A, Falomo M E, et al. Comparison between glycerol and ethylene glycol for the cryopreservation of equine spermatozoa: Semen quality assessment with standard analyses and with the hypoosmotic swelling test. Reprod Nutr Dev, 2002, 42:217~226. 51 Martin D A, Siegel R M, Zheng L, et al. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem, 1998, 273:4345~4349. 52 Martin G, Cagnon N, Sabido O, et al. Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Hum Reprod, 2007, 22:380~388. 53 McClintock D S, Santore M T, Lee V Y, et al. Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol, 2002, 22:94~104. 54 Muzio M, Stockwell B R, Stennicke H R, et al. An induced proximity model for caspase-8 activation. J Biol Chem, 1998, 273: 2926~2930. 55 Nagata S. Apoptosis by death factor. Cell, 1997, 88:355~365. 56 Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000, 403:98~103. 57 Nawroth F, Rahimi G, Isachenko E, et al. Cryopreservation in assisted reproductive technology: new trends. Semin Reprod Med, 2005, 23:325~335. 58 Nutt L K, Margolis S S, Jensen M, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell, 2005, 123:89~103. 59 Ortega-Ferrusola C, Sotillo-Galan Y, Varela-Fernandez E, et al. Detection of "apoptosis-like" changes during the cryopreservation process in equine sperm. J Androl, 2008, 29:213~221. 60 Ozaki Y, Blomgren K, Ogasawara M S, et al. Role of calpain in human sperm activated by progesterone for fertilization. Biol Chem, 2001, 382:831~838. 61 Paasch U, Grunewald S, Agarwal A, et al. Activation pattern of caspases in human spermatozoa. Fertil and Steril, 2004, 81(1): 802~809. 62 Paasch U, Grunewald S, Fitzl G, et al. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl, 2003, 24:246~252. 63 Paasch U, Sharma R K, Gupta A K, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod, 2004, 71:1828~1837. 64 Pena F J, Johannisson A, Wallgren M, et al. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim Reprod Sci, 2003, 78:85~98. 65 Pena F J, Johannisson A, Wallgren M, et al. Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: Changes in sperm membrane lipid architecture. Zygote, 2004, 12:117~124. 66 Rammohan V R, Evan H, Susana C O, et al. Coupling endoplasmic reticulum stress to the cell death program. J Biol Chem, 2001, 276:3869~3874. 67 Rao R V, Ellerby H M, Bredesen D E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ, 2004, 11:372~380. 68 Rath D, Bathgate R, Rodriguez-Martinez H, et al. Recent advances in boar semen cryopreservation. Soc Reprod Fertil Suppl, 2009, 66:51~66. 69 Robertson J D, Enoksson M, Suomela M, et al. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem, 2002, 277:29803~29809. 70 Roca J, Rodriguez M J, Gil M A, et al. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J Androl, 2005, 26:15~24. 71 Russell L D, Warren J, Debeljuk L, et al. Spermatogenesis in Bclw-deficient mice. Biol Reprod, 2001, 65:318~332. 72 Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: An in vitro model. Biol Reprod, 2006, 74:530~537. 73 Said T M, Grunewald S, Paasch U, et al. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online, 2005, 10:740~746. 74 Scatena R, Bottoni P, Botta G, et al. The role of mitochondria in pharmaco toxicology: A reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol, 2007, 293: C12~C21. 75 Shin S, Lee Y, Kim W, et al. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J, 2005, 24:3532~3542. 76 Sinha-Hikim A P, Swerdloff R S. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod, 1999, 4(1):38~47. 77 Stronati A, Manicardi G C, Cecati M, et al. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p, p'-DDE in European and Inuit populations. Reproduction, 2006, 132:949~958. 78 Tanaka H, Fujisawa M, Okada H, et al. Apoptosis-related proteins in the testes of infertile men with varicocele. BJU Int, 2002, 89:905~909. 79 Taylor K, Roberts P, Sanders K, et al. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online, 2009, 18:184~189. 80 Wang K K, Posmantur R, Nadimpalli R, et al. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys, 1998, 356:187~196. 81 Wang X, Sharma R K, Sikka S C, et al. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril, 2003, 80:531~535. 82 Weng S L, Taylor S L, Morshedi M, et al. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod, 2002, 8:984~991. 83 Werts C, Girardin S E, Philpott D J. TIR, CARD and PYRIN: Three domains for an antimicrobial triad. Cell Death Differ, 2006, 13:798~815. 84 Wundrich K, Paasch U, Leicht M, et al. Activation of caspases in human spermatozoa during cryopreservation an immunoblot study. Cell Tissue Bank, 2006, 7:81~90. 85 Yan W, Suominen J, Samson M, et al. Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol Cell Endocrinol, 2000, 165:115~129. 86 Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 1997, 275:1129~1132. 87 Yang X, Chang H Y, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell, 1998, 1:319~325. 88 Zheng S, Turner T T, Lysiak J J. Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod, 2006, 74:1026~1033. |
[1] | 钟粤韵, 杨舒展, 陈非玥, 陆智儿, 李冰心, 李婉雁, 田允波, 黄运茂, 许丹宁, 曹楠. LPS通过ROS/p38/MAPK信号通路对鹅胚肝细胞凋亡的影响[J]. 中国畜牧兽医, 2023, 50(6): 2224-2232. |
[2] | 顾先哲, 侯宁, 吕晓萍, 高雪丽, 刘超男, 吴文杰, 郑世民. 禽网状内皮组织增生病病毒感染对SPF雏鸡法氏囊细胞Bcl-2和C-myc基因表达及凋亡的影响[J]. 中国畜牧兽医, 2022, 49(4): 1488-1496. |
[3] | 吴艳, 皮劲松, 张昊, 梁振华, 杜金平, 潘爱銮, 申杰, 蒲跃进. miR-145-4调控蛋鸭卵泡发育机制的研究[J]. 中国畜牧兽医, 2022, 49(3): 809-816. |
[4] | 梁家充, 吕春荣, 洪琼花, 吴国权, 权国波. 云南半细毛羊精子冷冻前后转录组表达差异分析[J]. 中国畜牧兽医, 2022, 49(3): 973-981. |
[5] | 张颖, 李先强, 李亚娜, 王家乡, 吴艳, 皮劲松, 陈林. 颗粒细胞凋亡影响家禽卵泡闭锁的研究进展[J]. 中国畜牧兽医, 2022, 49(12): 4725-4733. |
[6] | 李梦杰, 赵伟刚, 郭肖兰, 顾士钢, 赵全民, 徐超. 冷冻稀释液中添加大豆卵磷脂对梅花鹿冻融精子质量的影响[J]. 中国畜牧兽医, 2022, 49(11): 4327-4334. |
[7] | 王娜, 张洁, 海超, 李欣, 李光鹏, 赵跃芳. 牛精子冷冻损伤及其改善方法[J]. 中国畜牧兽医, 2021, 48(6): 2101-2112. |
[8] | 李元辉, 傅春妮, 李鹏程, 彭玉凯, 李留安, 张建斌, 秦顺义. 富硒乳酸菌对黄曲霉毒素B1诱导鸡小肠上皮细胞凋亡的影响[J]. 中国畜牧兽医, 2021, 48(12): 4702-4709. |
[9] | 姚家威, 黄钰洁, 黄丽贞, 阮慧敏, 陈志胜, 王丙云, 陈胜锋, 张晖, 白银山, 刘璨颖, 计慧琴. α-酮戊二酸二甲酯预处理对犬脂肪间充质干细胞氧化应激损伤的保护作用[J]. 中国畜牧兽医, 2021, 48(12): 4735-4743. |
[10] | 菅芯蕊, 钱芙蓉, 王珺, 李晓霞, 张绍萱, 张志彬, 于永生, 高凯, 刁云飞, 张树敏, 李兆华. 聚乙烯吡咯烷酮对公猪精液冷冻的影响[J]. 中国畜牧兽医, 2020, 47(8): 2553-2560. |
[11] | 王黎霞, 宋丽聪, 张建军, 安健. 柔嫩艾美耳球虫感染对鸡血清凋亡蛋白的影响[J]. 中国畜牧兽医, 2020, 47(4): 1274-1281. |
[12] | 杨浩, 金三俊, 庞倩, 冯兴军. 白藜芦醇对畜禽常见肝损伤保护机制及应用的研究进展[J]. 中国畜牧兽医, 2020, 47(11): 3528-3535. |
[13] | 张生英, 武小椿, 邢小勇, 刘佳, 岳亚辉, 张阳阳, 贺健, 温峰琴, 包世俊. 牛支原体P48蛋白诱导EBL细胞增殖和凋亡的研究[J]. 中国畜牧兽医, 2020, 47(10): 3149-3157. |
[14] | 马兴树, 宋金祥. 非洲猪瘟病毒免疫及基因工程疫苗研究进展[J]. 中国畜牧兽医, 2019, 46(11): 3404-3413. |
[15] | 姜文杰, 李英花, 姚雪瑞, 赵予晗, 高青山, 朴春浩, 孙福亮, 许永男. 冷、热应激对猪孤雌胚胎体外发育的影响[J]. 《中国畜牧兽医》, 2018, 45(9): 2507-2515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||