›› 2013, Vol. 40 ›› Issue (4): 138-144.
丁丽, 曾长军
收稿日期:
2012-10-29
出版日期:
2013-04-20
发布日期:
2013-04-19
通讯作者:
曾长军(1975-),男,四川人,博士,副教授,主要从事动物繁殖生物技术和动物繁殖学教学科研工作。E-mail:zengchj@yahoo.com.cn;Tel:0835-2886080
E-mail:zengchj@yahoo.com.cn
作者简介:
丁丽(1986-),女,四川人,硕士生,研究方向:猪精液冷冻保存。
基金资助:
DING Li, ZENG Chang-jun
Received:
2012-10-29
Online:
2013-04-20
Published:
2013-04-19
摘要: 半胱氨酸天冬氨酸特异性蛋白酶(cysteinyl aspartate specific proteinase, Caspase)是直接导致凋亡细胞解体的蛋白酶家族,在细胞凋亡机制网络中处于中心地位。在精子发生发育过程中,机体通过生殖细胞凋亡与细胞增殖平衡机制来确保正常数量和质量的精子分化与成熟。精子冷冻保存会对精子造成不可逆的冷冻损伤,冷冻-解冻后,一些标志性凋亡现象会显著增多。作者对Caspase介导的细胞凋亡对精子发生发育及冷冻保存的影响机制进行了综述,表明精子发生发育和冷冻损伤与精子细胞凋亡存在密切的联系。
中图分类号:
丁丽, 曾长军. 半胱氨酸天冬氨酸特异性蛋白酶介导的细胞凋亡对精子发生发育及冷冻保存的影响[J]. , 2013, 40(4): 138-144.
DING Li, ZENG Chang-jun. Influences on Apoptosis Mediated by Caspases on Spermatogenesis, Development and Cryopreservation[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(4): 138-144.
1 弓娟琴, 陈志强, 李文忠, 等. Fas介导的凋亡与 Caspase家族[J]. 国外医学:肿瘤学分册, 2001, 27(5):279~280. 2 王力俭, 田可川, 吴伟伟,等. 细胞凋亡信号传导通路的研究进展[J]. 中国畜牧兽医, 2011, 38(10): 132~135. 3 朱登祥, 盂昭影, 魏会平. 男性不育与精子凋亡关系的研究[J]. 中国优生与遗传杂志, 2009, 17(1):89~90. 4 宋旭东, 刘桦, 李巧云, 等. Caspase-3与生精细胞凋亡关系的研究[J]. 现代预防医学, 2007, 34 (2):223~224. 5 张树山, 李青旺, 李刚, 等. 海藻糖、蔗糖和乳糖对猪精液冷冻保护效果的影响[J]. 西北农林科技大学学报(自然科学版), 2006,34 (6):41~45,51. 6 陈同强.睾丸生殖细胞凋亡与男性不育[J]. 赣南医学院学报, 2000, 20(2): 161~163. 7 高雅, 罗桂河, 李卫东, 等. 不同浓度乙二醇和甘油对犬精液冷冻效果的影响[J]. 中国农学通报, 2010, 26(8):25~28. 8 曹兴午, 王传航, 周强, 等. 不育症精液生精细胞凋亡率检测[J]. 生殖医学杂志, 2008, 17(5):351~355. 9 Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility——a clinician’s perspective. Reprod Biomed Online, 2005,11:641~650. 10 Almeida C, Cardoso M F, Sousa M, et al. Quantitative study of caspase-3 activity in semen and after swim-up preparation in relation to sperm quality. Hum Reprod, 2005, 20:1307~1313. 11 Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell, 2003, 4:687~697. 12 Arnoult D, Petit F, Lelievre J D, et al. Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun, 2003, 304:561~574. 13 Ashkenazi A, Dixit V M. Death receptors: Signaling and modulation. Science, 1998, 281:1305~1308. 14 Aziz N, Said T, Paasch U, et al. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod, 2007, 22:1413~1419. 15 Blanco-Rodriguez J. A matter of death and life: The significance of germ cell death during spermatogenesis. Int J Androl, 1998, 21(5):236~248. 16 Bonzon C, Bouchier-Hayes L, Pagliari L J, et al. Caspase-2-induced apoptosis requires bid cleavage: A physiological role for bid in heat shock-induced death. Mol Biol Cell, 2006, 17:2150~2157. 17 Bozec A, Amara S, Guarmit B, et al. Status of the executioner step of apoptosis in human with normal spermatogenesis and azoospermia. Fertil Steril, 2008, 90:1723~1731. 18 Brugnon F, Janny L, Artonne C, et al. Activated caspases in thawed epididymal and testicular spermatozoa of patients with congenital bilateral absence of the vas deferens and intracytoplasmic sperm injection outcome. Fertil Steril, 2009, 92:557~564. 19 Brum A M, Sabeur K, Ball B A. Apoptotic-like changes in equine spermatozoa separated by density-gradient centrifugation or after cryopreservation. Theriogenology, 2008, 69:1041~1055. 20 Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 1999, 15:269~290. 21 Carvajal G, Cuello C, Ruiz M, et al. Effects of centrifugation before freezing on boar sperm cryosurvival. J Androl, 2004, 25:389~396. 22 Cerolini S, Maldjian A, Surai P, et al. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim Reprod Sci, 2000, 58:99~111. 23 Choi Y J, Uhm S J, Song S J, et al. Cytochrome c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J Reprod Dev, 2008, 54:68~83. 24 Cryns V, Yuan J. Proteases to die for. Genes Dev, 1998, 12: 1551~1570. 25 Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene, 2003, 22(53): 8543~8567. 26 Dorstyn L, Puccini J, Wilson C H, et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ, 2012, 19:1288~1298. 27 Duru N K, Morshedi M S, Schuffner A, et al. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl, 2001, 22:646~651. 28 Fraser L, Parda A, Filipowicz K, et al. Comparison of post-thaw DNA integrity of boar spermatozoa assessed with the neutral comet assay and sperm-sus Halomax test kit. Reprod Domest Anim, 2010, 45:e155~e160. 29 Groenendyk J, Michalak M. Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol, 2005, 52: 381~395. 30 Grunewald S, Paasch U, Wuendrich K, et al. Sperm caspases become more activated in infertility patients than in healthy donors during cryopreservation. Arch Androl, 2005, 51:449~460. 31 Grunewald S, Said T M, Paasch U, et al. Relationship between sperm apoptosis signalling and oocyte penetration capacity. Int J Androl, 2008, 31:325~330. 32 Grunewald S, Kriegel C, Baumann T, et al. Interactions between apoptotic signal transduction and capacitation in human spermatozoa. Hum Reprod, 2009a, 24:2071~2078. 33 Grunewald S, Sharma R, Paasch U, et al. Impact of caspase activation in human spermatozoa. Microsc Res Tech, 2009b, 72(11):878~888. 34 Guo Y, Srinivasula S M, Druilhe A, et al. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem, 2002, 277:13430~13437. 35 Gutierrez-Perez O, Juarez-Mosqueda Mde L, Carvajal S U, et al. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. Cryobiology, 2009, 58(3):287~292. 36 Hacker G, Paschen S A. Therapeutic targets in the mitochondrial apoptotic pathway. Expert Opin Ther Targets, 2007, 11: 515~526. 37 Hikim A P, Wang C, Lue Y, et al. Spontaneous germ cell apoptosis in humans: Evidence for ethnic differences in the susceptibility of germ cells to programmed cell death. J Clin Endocrinol Metab, 1998, 83:152~156. 38 Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol, 2004, 165:347~356. 39 Ho L H, Read S H, Dorstyn L, et al. Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene, 2008, 27:3393~3404. 40 Jeong Y J, Kim M K, Song H J, et al. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. Cryobiology, 2009, 58:181~189. 41 eyendran R S, Van der Ven H H, Perez-Pelaez M, et al. Effect of glycerol and cryopreservation on oocyte penetration by human spermatozoa. Andrologia, 1985, 17:241~248. 42 Jha R, Agarwal A, Mahfouz R, et al. Determination of poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril, 2009, 91:782~790. 43 Kerr J F, Wyllie A H, Currie A R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26: 239~257. 44 Kim J M, Ghosh S R, Weil A C, et al. Caspase-3 and caspase-activated deoxyribonuclease are associated with testicular germ cell apoptosis resulting from reduced intratesticular testosterone. Endocrinology, 2001, 142:3809~3816. 45 Kim S, Lee Y J, Ji D B, et al. Evaluation of different cryoprotectants (CPAs) in boar semen cryopreservation. J Vet Med Sci, 2011, 73:961~963. 46 Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science, 2002, 297:1352~1354. 47 Li H, Zhu H, Xu C J, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998, 94:491~501. 48 Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91:479~489. 49 Macias Garcia B, Ortega Ferrusola C, Aparicio I M, et al. Toxicity of glycerol for the stallion spermatozoa: Effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology, 2012, 77:1280~1289. 50 Mantovani R, Rora A, Falomo M E, et al. Comparison between glycerol and ethylene glycol for the cryopreservation of equine spermatozoa: Semen quality assessment with standard analyses and with the hypoosmotic swelling test. Reprod Nutr Dev, 2002, 42:217~226. 51 Martin D A, Siegel R M, Zheng L, et al. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem, 1998, 273:4345~4349. 52 Martin G, Cagnon N, Sabido O, et al. Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Hum Reprod, 2007, 22:380~388. 53 McClintock D S, Santore M T, Lee V Y, et al. Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol, 2002, 22:94~104. 54 Muzio M, Stockwell B R, Stennicke H R, et al. An induced proximity model for caspase-8 activation. J Biol Chem, 1998, 273: 2926~2930. 55 Nagata S. Apoptosis by death factor. Cell, 1997, 88:355~365. 56 Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000, 403:98~103. 57 Nawroth F, Rahimi G, Isachenko E, et al. Cryopreservation in assisted reproductive technology: new trends. Semin Reprod Med, 2005, 23:325~335. 58 Nutt L K, Margolis S S, Jensen M, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell, 2005, 123:89~103. 59 Ortega-Ferrusola C, Sotillo-Galan Y, Varela-Fernandez E, et al. Detection of "apoptosis-like" changes during the cryopreservation process in equine sperm. J Androl, 2008, 29:213~221. 60 Ozaki Y, Blomgren K, Ogasawara M S, et al. Role of calpain in human sperm activated by progesterone for fertilization. Biol Chem, 2001, 382:831~838. 61 Paasch U, Grunewald S, Agarwal A, et al. Activation pattern of caspases in human spermatozoa. Fertil and Steril, 2004, 81(1): 802~809. 62 Paasch U, Grunewald S, Fitzl G, et al. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl, 2003, 24:246~252. 63 Paasch U, Sharma R K, Gupta A K, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod, 2004, 71:1828~1837. 64 Pena F J, Johannisson A, Wallgren M, et al. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim Reprod Sci, 2003, 78:85~98. 65 Pena F J, Johannisson A, Wallgren M, et al. Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: Changes in sperm membrane lipid architecture. Zygote, 2004, 12:117~124. 66 Rammohan V R, Evan H, Susana C O, et al. Coupling endoplasmic reticulum stress to the cell death program. J Biol Chem, 2001, 276:3869~3874. 67 Rao R V, Ellerby H M, Bredesen D E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ, 2004, 11:372~380. 68 Rath D, Bathgate R, Rodriguez-Martinez H, et al. Recent advances in boar semen cryopreservation. Soc Reprod Fertil Suppl, 2009, 66:51~66. 69 Robertson J D, Enoksson M, Suomela M, et al. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem, 2002, 277:29803~29809. 70 Roca J, Rodriguez M J, Gil M A, et al. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J Androl, 2005, 26:15~24. 71 Russell L D, Warren J, Debeljuk L, et al. Spermatogenesis in Bclw-deficient mice. Biol Reprod, 2001, 65:318~332. 72 Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: An in vitro model. Biol Reprod, 2006, 74:530~537. 73 Said T M, Grunewald S, Paasch U, et al. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online, 2005, 10:740~746. 74 Scatena R, Bottoni P, Botta G, et al. The role of mitochondria in pharmaco toxicology: A reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol, 2007, 293: C12~C21. 75 Shin S, Lee Y, Kim W, et al. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J, 2005, 24:3532~3542. 76 Sinha-Hikim A P, Swerdloff R S. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod, 1999, 4(1):38~47. 77 Stronati A, Manicardi G C, Cecati M, et al. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p, p'-DDE in European and Inuit populations. Reproduction, 2006, 132:949~958. 78 Tanaka H, Fujisawa M, Okada H, et al. Apoptosis-related proteins in the testes of infertile men with varicocele. BJU Int, 2002, 89:905~909. 79 Taylor K, Roberts P, Sanders K, et al. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online, 2009, 18:184~189. 80 Wang K K, Posmantur R, Nadimpalli R, et al. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys, 1998, 356:187~196. 81 Wang X, Sharma R K, Sikka S C, et al. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril, 2003, 80:531~535. 82 Weng S L, Taylor S L, Morshedi M, et al. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod, 2002, 8:984~991. 83 Werts C, Girardin S E, Philpott D J. TIR, CARD and PYRIN: Three domains for an antimicrobial triad. Cell Death Differ, 2006, 13:798~815. 84 Wundrich K, Paasch U, Leicht M, et al. Activation of caspases in human spermatozoa during cryopreservation an immunoblot study. Cell Tissue Bank, 2006, 7:81~90. 85 Yan W, Suominen J, Samson M, et al. Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol Cell Endocrinol, 2000, 165:115~129. 86 Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 1997, 275:1129~1132. 87 Yang X, Chang H Y, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell, 1998, 1:319~325. 88 Zheng S, Turner T T, Lysiak J J. Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod, 2006, 74:1026~1033. |
[1] | 罗通旺, 金研, 盛燚凡, 王书杰, 宋厚辉, 邵春艳. 异荭草素的生物学功能研究进展[J]. 中国畜牧兽医, 2025, 52(4): 1579-1589. |
[2] | 常欣欣, 黄鑫, 范港, 杨佳欣, 张伟伟, 杨清竹, 田哲. 大麻二酚对脂多糖诱导的小鼠乳腺上皮细胞炎症反应和凋亡的抑制作用[J]. 中国畜牧兽医, 2025, 52(1): 60-69. |
[3] | 刘海霞, 王健, 平措班旦, 朱爱文, 德庆卓嘎, 王军, 格桑加措. 彭波半细毛羊冷冻保存睾丸组织支持细胞分离、纯化及鉴定[J]. 中国畜牧兽医, 2025, 52(1): 249-257. |
[4] | 张曼, 王艳慧, 李寒笑, 刘恩赐, 李庆豪, 于瑞, 罗琴, 金鑫. ROS积聚在黄曲霉毒素B1诱导仔猪空肠上皮细胞凋亡中的作用[J]. 中国畜牧兽医, 2024, 51(9): 3857-3866. |
[5] | 赵艺嘉, 李栋, 胡建宏, 杨公社, 于太永. 猪精液保存技术研究进展[J]. 中国畜牧兽医, 2024, 51(9): 3909-3920. |
[6] | 冀国尚, 盛辉, 张俊星, 冯雪, 户春丽, 王雅春, 马燕芬, 李莉, 杨文飞, 马云. PCYOX1L基因调控LPS诱导的牛子宫内膜上皮细胞的功能研究[J]. 中国畜牧兽医, 2024, 51(7): 2984-2997. |
[7] | 王振国, 李瀚森, 张丽, 周千, 时娟娟, 石磊, 任有蛇. 黄芪多糖对绵羊精液冷冻保存的影响[J]. 中国畜牧兽医, 2024, 51(5): 2007-2014. |
[8] | 宝华, 户春丽, 安彦昊, 张春华, 马燕芬. 表没食子儿茶素没食子酸酯对脂多糖诱导的奶牛乳腺上皮细胞炎性损伤和凋亡的干预作用[J]. 中国畜牧兽医, 2024, 51(5): 2122-2131. |
[9] | 王佳伦, 陈辉, 孙浩玮, 郭瑶瑶, 梁国栋, 马云会, 高磊. 猪精液冷冻保存技术研究进展[J]. 中国畜牧兽医, 2024, 51(2): 639-648. |
[10] | 陈巍, 陈晓兰, 周思杨, 解肖羽婷, 王豪, 杨海峰. 佛耳草总黄酮联合抗生素对大鼠慢性阻塞性肺疾病引起的气道炎症的缓解作用[J]. 中国畜牧兽医, 2024, 51(12): 5518-5527. |
[11] | 李敬轩, 龙城, 齐晓龙. 内质网应激对睾丸间质细胞中睾酮合成影响的研究进展[J]. 中国畜牧兽医, 2024, 51(11): 4722-4731. |
[12] | 罗安凤, 张玉清, 王昕昕, 杨彩侠, 解迪. Ola1对小鼠早期胚胎体外发育的影响[J]. 中国畜牧兽医, 2024, 51(11): 4871-4879. |
[13] | 曾红玉, 叶贵珊, 武琦, 张安定, 韩丽. OXSR1活性对p53依赖和非依赖途径介导的犬肾细胞凋亡的影响[J]. 中国畜牧兽医, 2024, 51(10): 4222-4234. |
[14] | 孙清漪, 李梦奇, 赵炜, 张文涛, 张效生, 张金龙, 张洪军, 房晓欢, 陶晨雨, 夏威, 李俊杰. 承德无角山羊耳成纤维细胞系的建立与冷冻保存研究[J]. 中国畜牧兽医, 2024, 51(1): 183-192. |
[15] | 钟粤韵, 杨舒展, 陈非玥, 陆智儿, 李冰心, 李婉雁, 田允波, 黄运茂, 许丹宁, 曹楠. LPS通过ROS/p38/MAPK信号通路对鹅胚肝细胞凋亡的影响[J]. 中国畜牧兽医, 2023, 50(6): 2224-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||