[1] THORNTON P K.Livestock production:Recent trends,future prospects[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2010,365(1554):2853-2867. [2] HAVENSTEIN G B,FERKET P R,QURESHI M A.Growth,livability,and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets[J].Poultry Science,2003,82(10):1500-1508. [3] CAPPER J L,BAUMAN D E.The role of productivity in improving the environmental sustainability of ruminant production systems[J].Annual Review of Animal Biosciences,2013,1:469-489. [4] PRYCE J E,ROYAL M D,GARNSWORTHY P C,et al.Fertility in the high-producing dairy cow[J].Livestock Production Science,2004,86(1-3):125-135. [5] GODDARD M E,HAYES B J.Mapping genes for complex traits in domestic animals and their use in breeding programmes[J].Nature Reviews Genetics,2009,10(6):381-391. [6] MEUWISSEN T H E,HAYES B J,GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics,2001,157(4):1819-1829. [7] HILL W G,GODDARD M E,VISSCHER P M.Data and theory point to mainly additive genetic variance for complex traits[J].PLoS Genetics,2008,4(2):e1000008. [8] WIGGANS G R,COLE J B,HUBBARD S M,et al.Genomic selection in dairy cattle:The USDA experience[J].Annual Review of Animal Biosciences,2017,5(1):309-327. [9] 阿地力江·卡德尔,刘雪雪,杨敏,等.全基因组选择信号检测方法在家畜研究中的应用进展[J].中国畜牧兽医,2016,43(6):1641-1646. ADILJAN K,LIU X X,YANG M,et al.Development and application of genomic selection signature methods in livestock species[J].China Animal Husbandry & Veterinary Medicine,2016,43(6):1641-1646. [10] CROSSA J,PÉREZ-RODRÍGUEZ P,CUEVAS J,et al.Genomic selection in plant breeding:Methods,models,and perspectives[J].Trends in Plant Science,2017,22(11):961-975. [11] MARIO HERRERO S W B H.Livestock and the environment:What have we learned in the past decade[J].Annual Review of Environment and Resources,2015,40:177-202. [12] CONSORTIUM S A,ELSIK C G,TELLAM R L,et al.The genome sequence of taurine cattle:A window to ruminant biology and evolution[J].Science,2009,324(5926):522-528. [13] JIANG Y,XIE M,CHEN W,et al.The sheep genome illuminates biology of the rumen and lipid metabolism[J].Science,2014,344(6188):1168-1173. [14] DONG Y,XIE M,JIANG Y,et al.Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)[J].Nature Biotechnology,2013,31(2):135-141. [15] GROENEN M A,ARCHIBALD A L,UENISHI H,et al.Analyses of pig genomes provide insight into porcine demography and evolution[J].Nature,2012,491(7424):393-398. [16] INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM.Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J].Nature,2004,432(7018):695-716. [17] DAETWYLER H D,CAPITAN A,PAUSCH H,et al.Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle[J].Nature Genetics,2014,46(8):858-865. [18] KORLACH J,MARKS P J,CICERO R L,et al.Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in Zero-Mode waveguide nanostructures[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(4):1176-1181. [19] CLARKE J,WU H C,JAYASINGHE L,et al.Continuous base identification for single-molecule nanopore DNA sequencing[J].Nature Nanotechnology,2009,4(4):265-270. [20] BICKHART D M,ROSEN B D,KOREN S,et al.Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J].Nature Genetics,2017,49(4):643-650. [21] GEORGES M,CHARLIER C,HAYES B.Harnessing genomic information for livestock improvement[J].Nature Reviews Genetics,2019,20(3):135-156. [22] WONG G K,LIU B,WANG J,et al.A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms[J].Nature,2004,432(7018):717-722. [23] AUTON A,BROOKS L D,DURBIN R M,et al.A global reference for human genetic variation[J].Nature,2015,526(7571):68-74. [24] CHARLIER C,LI W,HARLAND C,et al.NGS-based reverse genetic screen for common embryonic lethal mutations compromising fertility in livestock[J].Genome Research,2016,26(10):1333-1341. [25] MACLEOD I M,BOWMAN P J,VANDER JAGT C J,et al.Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits[J].BMC Genomics,2016,17:144. [26] BOURNEUF E,OTZ P,PAUSCH H,et al.Rapid Discovery of de novo deleterious mutations in cattle enhances the value of livestock as model species[J].Scientific Reports,2017,7(1):11466. [27] KADRI N K,HARLAND C,FAUX P,et al.Coding and noncoding variants in HFM1,MLH3,MSH4,MSH5,RNF212,and RNF212B affect recombination rate in cattle[J].Genome Research,2016,26(10):1323-1332. [28] SCHAUB M A,BOYLE A P,KUNDAJE A,et al.Linking disease associations with regulatory information in the human genome[J].Genome Research,2012,22(9):1748-1759. [29] ANDERSSON L,ARCHIBALD A L,BOTTEMA C D,et al.Coordinated international action to accelerate genome-to-phenome with FAANG,the functional annotation of animal genomes project[J].Genome Biology,2015,16:57. [30] VILLAR D,BERTHELOT C,ALDRIDGE S,et al.Enhancer evolution across 20 mammalian species[J].Cell,2015,160(3):554-566. [31] ZHOU Y,XU L,BICKHART D M,et al.Reduced representation bisulphite sequencing of ten bovine somatic tissues reveals DNA methylation patterns and their impacts on gene expression[J].BMC Genomics,2016,17(1):779. [32] LITTLEJOHN M D,TIPLADY K,FINK T A,et al.Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic effects on bovine milk composition[J].Scientific Reports,2016,6:25376. [33] KEMPER K E,LITTLEJOHN M D,LOPDELL T,et al.Leveraging genetically simple traits to identify small-effect variants for complex phenotypes[J].BMC Genomics,2016,17(1):858. [34] BODO B,MARKUS O S,JULIANE F,et al.Adrenal cortex expression quantitative trait loci in a German Holstein×Charolais cross[J].BMC Genetics,2016,17(1):135. [35] THOMAS J L,KATHRYN T,MAKSIM S,et al.DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content[J].BMC Genomics,2017,18(1):968. [36] CHEN C,YANG B,ZENG Z,et al.Genetic dissection of blood lipid traits by integrating genome-wide association study and gene expression profiling in a porcine model[J].BMC Genomics,2013,14:848. [37] JUNWU M,JIE Y,LISHENG Z,et al.A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle[J].PLoS Genetics,2014,10(10):e1004710. [38] GONZÁLEZ-PRENDES R,QUINTANILLA R,CÁNOVAS A,et al.Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits[J].Scientific Reports,2017,7:39830. [39] MAROILLEY T,LEMONNIER G,LECARDONNEL J,et al.Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis[J].BMC Genomics,2017,18(1):967. [40] YUNA B,GUILLAUME L M,DAVID C,et al.Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken[J].BMC Genomics,2011,12:567. [41] JOHNSSON M,JONSSON K B,ANDERSSON L,et al.Quantitative trait locus and genetical genomics analysis identifies putatively causal genes for fecundity and brooding in the chicken[J].G3(Bethesda),2015,6(2):311-319. [42] JOHNSSON M,WILLIAMS M J,JENSEN P,et al.Genetical genomics of behavior:A novel chicken genomic model for anxiety behavior[J].Genetics,2016,202(1):327-340. [43] FALLAHSHAROUDI A,DE KOCK N,JOHNSSON M,et al.QTL mapping of stress related gene expression in a cross between domesticated chickens and ancestral red junglefowl[J].Molecular and Cellular Endocrinology,2017,446:52-58. [44] BATTLE A,BROWN C D,ENGELHARDT B E,et al.Genetic effects on gene expression across human tissues[J].Nature,2017,550(7675):204-213. [45] MARTINEZ V,BVNGER L,HILL W G.Analysis of response to 20 generations of selection for body composition in mice:Fit to infinitesimal model assumptions[J].Genetics Selection Evolution,2000,32(1):3-21. [46] MICHAEL L,BRUCE W.Genetics and Analysis of Quantitative Traits[M].Sinauer:Sunderland,1998. [47] HENDERSON C R.Sire evaluation and genetic trends[J].Journal of Animal Science,1973,1973(Symposium):10-41. [48] WRIGHT S.Coefficients of inbreeding and relationship[J].The American Naturalist,1922,56:330-338. [49] GARANT D,KRUUK L E.How to use molecular marker data to measure evolutionary parameters in wild populations[J].Molecular Ecology,2005,14(7):1843-1859. [50] ROHAN L F,HAO C,BRUCE L,et al.Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals[J].Genetics Selection Evolution,2016,48(1):96. [51] GARCÍA-RUIZ A,COLE J B,VANRADEN P M,et al.Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(28):E3995-E4004. [52] LOURENCO D A L,TSURUTA S,FRAGOMENI B O,et al.Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus[J].Journal of Animal Science,2015,93(6):2653-2662. [53] CAITLYN E A,JACK C M D,MAX F R,et al.Total cost estimation for implementing genome-enabled selection in a multi-level swine production system[J].Genetics Selection Evolution,2014,46:32. [54] SANTOS B F S,AMER P R,GRANLEESE T,et al.Assessment of the genetic and economic impact of performance recording and genotyping in Australian commercial sheep operations[J].Journal of Animal Breeding and Genetics,2018,135(3):221-237. [55] WOLC A,ZHAO H H,ARANGO J,et al.Response and inbreeding from a genomic selection experiment in layer chickens[J].Genetics Selection Evolution,2015,47:59. [56] GONZALEZ-RECIO O,PRYCE J E,HAILE-MARIAM M,et al.Incorporating heifer feed efficiency in the Australian selection index using genomic selection[J].Journal of Dairy Science,2014,97(6):3883-3893. [57] 伏智亮,沈如玉,王绮绮,等.肌肉生长抑制素调控肌肉和脂肪组织代谢的研究进展[J].畜牧与兽医,2019,51(7):121-126. FU Z L,SHEN R Y,WANG Q Q,et al.Advances in researches on myostatin in the regulation of muscle and adipose tissue metabolism[J].Animal Husbandry & Veterinary Medicine,2019,51(7):121-126.(in Chinese) [58] 吴东旺,孙丽媛,袁再美,等.动物DGAT基因的研究进展[J].中国畜牧兽医,2019,46(7):1945-1952. WU D W,SUN L Y,YUAN Z M,et al.Research progress on animal DGAT gene[J].China Animal Husbandry & Veterinary Medicine,2019,46(7):1945-1952.(in Chinese) [59] BLOTT S,KIM J J,MOISIO S,et al.Molecular dissection of a quantitative trait locus:A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition[J].Genetics,2003,163(1):253-266. [60] COHEN-ZINDER M,SEROUSSI E,LARKIN D M,et al.Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle[J].Genome Research,2005,15(7):936-944. [61] KARIM L,TAKEDA H,LIN L,et al.Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature[J].Nature Genetics,2011,43(5):405-413. [62] BOUWMAN A C,DAETWYLER H D,CHAMBERLAIN A J,et al.Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals[J].Nature Genetics,2018,50(3):362-367. [63] DAVID H,ROHAN L F,KADIR K,et al.Extension of the bayesian alphabet for genomic selection[J].BMC Bioinformatics,2011,12:186. [64] ERBE M,HAYES B J,MATUKUMALLI L K,et al.Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J].Journal of Dairy Science,2012,95(7):4114-4129. [65] MIKE G.Genomic selection:Prediction of accuracy and maximisation of long term response[J].Genetica,2009,136(2):245-257. [66] PSZCZOLA M,CALUS M P L.Updating the reference population to achieve constant genomic prediction reliability across generations[J].Animal,2016,10(6):1018-1024. [67] BRΦNDUM R F,SU G,JANSS L,et al.Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction[J].Journal of Dairy Science,2015,98(6):4107-4116. [68] HUANG H,FANG M,JOSTINS L,et al.Fine-mapping inflammatory bowel disease loci to single-variant resolution[J].Nature,2017,547(7663):173-178. [69] WANG H,YANG H,SHIVALILA C S,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J].Cell,2013,153(4):910-918. [70] JENKO J,GORJANC G,CLEVELAND M A,et al.Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[J].Genetics Selection Evolution,2015,47:55. [71] KASINATHAN P,WEI H,XIANG T,et al.Acceleration of genetic gain in cattle by reduction of generation interval[J].Scientific Reports,2015,5:8674. [72] ROSS E M,MOATE P J,MARETT L C,et al.Metagenomic predictions:From microbiome to complex health and environmental phenotypes in humans and cattle[J].PLoS One,2013,8(9):e73056. [73] KITTELMANN S,PINARES-PATIÑO C S,SEEDORF H,et al.Two different bacterial community types are linked with the low-methane emission trait in sheep[J].PLoS One,2014,9(7):e103171. |